F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express 21, 188494 (2013).

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum. 84(1), 015108 (2013).

[CrossRef]
[PubMed]

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol. 44(4), 839–843 (2012).

[CrossRef]

C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision. 29, 385–393 (2012).

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol. 22(10), 105901 (2011).

[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.) 122(17), 1530–1534 (2011).

[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng. 19(3), 515–519 (2011).

[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact. 9, 26–31 (2008).

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin. 28, 112–116 (2008).

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin. 28(12), 2344–2348 (2008).

[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng. 46(5), 051016 (2007).

[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum. 76(5), 055110 (2005).

[CrossRef]

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng. 127(4), 857–865 (2005).

[CrossRef]

P. Sandoz, “Nanometric position and displacement measurement of the six degrees of freedom by means of a patterned surface element,” Appl. Opt. 44(8), 1449–1453 (2005).

[CrossRef]
[PubMed]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol. 36(4), 279–283 (2004).

[CrossRef]

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng. 26(1), 99–104 (2002).

[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol. 12(9), 1495–1502 (2001).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol. 105(3), 394–406 (2000).

[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol. 105(3), 407–420 (2000).

[CrossRef]

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng. 24(1), 15–23 (2000).

[CrossRef]

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf. 38(3), 155–164 (1998).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf. 35(5), 725–738 (1995).

[CrossRef]

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng 28, 273–274 (1994).

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind. 114, 362–389 (1992).

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng. 26(1), 99–104 (2002).

[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol. 12(9), 1495–1502 (2001).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin. 28(12), 2344–2348 (2008).

[CrossRef]

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng. 24(1), 15–23 (2000).

[CrossRef]

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf. 38(3), 155–164 (1998).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express 21, 188494 (2013).

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol. 105(3), 394–406 (2000).

[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol. 105(3), 407–420 (2000).

[CrossRef]

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng. 24(1), 15–23 (2000).

[CrossRef]

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf. 38(3), 155–164 (1998).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol. 44(4), 839–843 (2012).

[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.) 122(17), 1530–1534 (2011).

[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng. 19(3), 515–519 (2011).

[CrossRef]

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin. 28(12), 2344–2348 (2008).

[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin. 28, 112–116 (2008).

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact. 9, 26–31 (2008).

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng. 46(5), 051016 (2007).

[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol. 36(4), 279–283 (2004).

[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng. 46(5), 051016 (2007).

[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum. 76(5), 055110 (2005).

[CrossRef]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum. 76(5), 055110 (2005).

[CrossRef]

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf. 35(5), 725–738 (1995).

[CrossRef]

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind. 114, 362–389 (1992).

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf. 38(3), 155–164 (1998).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng 28, 273–274 (1994).

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum. 76(5), 055110 (2005).

[CrossRef]

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol. 22(10), 105901 (2011).

[CrossRef]

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng. 26(1), 99–104 (2002).

[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol. 12(9), 1495–1502 (2001).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng. 26(1), 99–104 (2002).

[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol. 12(9), 1495–1502 (2001).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum. 84(1), 015108 (2013).

[CrossRef]
[PubMed]

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact. 9, 26–31 (2008).

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng. 46(5), 051016 (2007).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol. 36(4), 279–283 (2004).

[CrossRef]

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng. 26(1), 99–104 (2002).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol. 22(10), 105901 (2011).

[CrossRef]

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng 28, 273–274 (1994).

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol. 22(10), 105901 (2011).

[CrossRef]

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng. 127(4), 857–865 (2005).

[CrossRef]

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum. 84(1), 015108 (2013).

[CrossRef]
[PubMed]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

C. H. Liu, H. L. Huang, and H. W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Appl. Opt. 48(14), 2767–2777 (2009).

[CrossRef]
[PubMed]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum. 76(5), 055110 (2005).

[CrossRef]

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum. 84(1), 015108 (2013).

[CrossRef]
[PubMed]

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng. 127(4), 857–865 (2005).

[CrossRef]

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng. 127(4), 857–865 (2005).

[CrossRef]

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf. 35(5), 725–738 (1995).

[CrossRef]

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind. 114, 362–389 (1992).

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol. 105(3), 407–420 (2000).

[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol. 105(3), 394–406 (2000).

[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng 28, 273–274 (1994).

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express 21, 188494 (2013).

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision. 29, 385–393 (2012).

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind. 114, 362–389 (1992).

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.) 122(17), 1530–1534 (2011).

[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng. 19(3), 515–519 (2011).

[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol. 44(4), 839–843 (2012).

[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin. 28, 112–116 (2008).

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol. 44(4), 839–843 (2012).

[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.) 122(17), 1530–1534 (2011).

[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng. 19(3), 515–519 (2011).

[CrossRef]

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin. 28(12), 2344–2348 (2008).

[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin. 28, 112–116 (2008).

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact. 9, 26–31 (2008).

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol. 36(4), 279–283 (2004).

[CrossRef]

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express 21, 188494 (2013).

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin. 28, 112–116 (2008).

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin. 28(12), 2344–2348 (2008).

[CrossRef]

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind. 114, 362–389 (1992).

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng 28, 273–274 (1994).

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf. 38(3), 155–164 (1998).

[CrossRef]

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf. 35(5), 725–738 (1995).

[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf. 37(5), 579–590 (1997).

[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact. 9, 26–31 (2008).

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng. 127(4), 857–865 (2005).

[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol. 105(3), 394–406 (2000).

[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol. 105(3), 407–420 (2000).

[CrossRef]

C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision. 29, 385–393 (2012).

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).

[CrossRef]

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol. 22(10), 105901 (2011).

[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol. 12(9), 1495–1502 (2001).

[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol. 18(12), 3795–3800 (2007).

[CrossRef]

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng. 46(5), 051016 (2007).

[CrossRef]

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express 21, 188494 (2013).

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol. 36(4), 279–283 (2004).

[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol. 44(4), 839–843 (2012).

[CrossRef]

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett. 37(7), 1247–1249 (2012).

[CrossRef]
[PubMed]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng. 19(3), 515–519 (2011).

[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.) 122(17), 1530–1534 (2011).

[CrossRef]

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng. 26(1), 99–104 (2002).

[CrossRef]

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng. 24(1), 15–23 (2000).

[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng. 30(1), 96–103 (2006).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE 6150, 61502F (2006).

[CrossRef]

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum. 84(1), 015108 (2013).

[CrossRef]
[PubMed]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum. 76(5), 055110 (2005).

[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(8), 3214–3219 (2000).

[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A 125(1), 100–108 (2005).

[CrossRef]

http://www.apisensor.com/ .