Abstract

A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol.105(3), 394–406 (2000).
    [CrossRef]
  2. A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol.105(3), 407–420 (2000).
    [CrossRef]
  3. J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind.114, 362–389 (1992).
  4. P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf.35(5), 725–738 (1995).
    [CrossRef]
  5. C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
    [CrossRef]
  6. C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
    [CrossRef]
  7. S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng28, 273–274 (1994).
  8. Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact.9, 26–31 (2008).
  9. C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
    [CrossRef]
  10. K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf.38(3), 155–164 (1998).
    [CrossRef]
  11. K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng.24(1), 15–23 (2000).
    [CrossRef]
  12. W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
    [CrossRef]
  13. C. H. Liu, H. L. Huang, and H. W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Appl. Opt.48(14), 2767–2777 (2009).
    [CrossRef] [PubMed]
  14. J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
    [CrossRef]
  15. J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
    [CrossRef]
  16. C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision.29, 385–393 (2012).
  17. U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
    [CrossRef]
  18. C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol.22(10), 105901 (2011).
    [CrossRef]
  19. E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol.12(9), 1495–1502 (2001).
    [CrossRef]
  20. D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett.37(7), 1247–1249 (2012).
    [CrossRef] [PubMed]
  21. S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng.127(4), 857–865 (2005).
    [CrossRef]
  22. P. Sandoz, “Nanometric position and displacement measurement of the six degrees of freedom by means of a patterned surface element,” Appl. Opt.44(8), 1449–1453 (2005).
    [CrossRef] [PubMed]
  23. http://www.apisensor.com/ .
  24. Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
    [CrossRef]
  25. C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
    [CrossRef]
  26. C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng.46(5), 051016 (2007).
    [CrossRef]
  27. Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol.44(4), 839–843 (2012).
    [CrossRef]
  28. Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin.28, 112–116 (2008).
  29. C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
    [CrossRef]
  30. R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin.28(12), 2344–2348 (2008).
    [CrossRef]
  31. F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.)122(17), 1530–1534 (2011).
    [CrossRef]
  32. F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng.19(3), 515–519 (2011).
    [CrossRef]
  33. F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express21, 188494 (2013).
  34. K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
    [CrossRef] [PubMed]

2013 (2)

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express21, 188494 (2013).

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

2012 (3)

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol.44(4), 839–843 (2012).
[CrossRef]

C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision.29, 385–393 (2012).

D. P. Burt, P. S. Dobson, K. E. Docherty, C. W. Jones, R. K. Leach, S. Thoms, J. M. Weaver, and Y. Zhang, “Aperiodic interferometer for six degrees of freedom position measurement,” Opt. Lett.37(7), 1247–1249 (2012).
[CrossRef] [PubMed]

2011 (3)

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol.22(10), 105901 (2011).
[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.)122(17), 1530–1534 (2011).
[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng.19(3), 515–519 (2011).
[CrossRef]

2009 (1)

2008 (3)

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact.9, 26–31 (2008).

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin.28, 112–116 (2008).

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin.28(12), 2344–2348 (2008).
[CrossRef]

2007 (2)

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng.46(5), 051016 (2007).
[CrossRef]

2006 (2)

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

2005 (5)

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
[CrossRef]

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng.127(4), 857–865 (2005).
[CrossRef]

P. Sandoz, “Nanometric position and displacement measurement of the six degrees of freedom by means of a patterned surface element,” Appl. Opt.44(8), 1449–1453 (2005).
[CrossRef] [PubMed]

2004 (1)

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

2002 (1)

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
[CrossRef]

2001 (1)

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol.12(9), 1495–1502 (2001).
[CrossRef]

2000 (4)

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol.105(3), 394–406 (2000).
[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol.105(3), 407–420 (2000).
[CrossRef]

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng.24(1), 15–23 (2000).
[CrossRef]

1998 (1)

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf.38(3), 155–164 (1998).
[CrossRef]

1997 (1)

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

1995 (1)

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf.35(5), 725–738 (1995).
[CrossRef]

1994 (1)

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng28, 273–274 (1994).

1992 (1)

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind.114, 362–389 (1992).

Arai, Y.

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

Bae, E. W.

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol.12(9), 1495–1502 (2001).
[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

Burt, D. P.

Cao, R.

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin.28(12), 2344–2348 (2008).
[CrossRef]

Chen, M. J.

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng.24(1), 15–23 (2000).
[CrossRef]

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf.38(3), 155–164 (1998).
[CrossRef]

Chen, S.

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Chou, C.

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

Chou, L. Y.

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

Cui, J.

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express21, 188494 (2013).

Dobson, P. S.

Docherty, K. E.

Ertekin, Y. M.

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol.105(3), 394–406 (2000).
[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol.105(3), 407–420 (2000).
[CrossRef]

Fan, K. C.

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng.24(1), 15–23 (2000).
[CrossRef]

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf.38(3), 155–164 (1998).
[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

Feng, Q.

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol.44(4), 839–843 (2012).
[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.)122(17), 1530–1534 (2011).
[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng.19(3), 515–519 (2011).
[CrossRef]

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin.28(12), 2344–2348 (2008).
[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin.28, 112–116 (2008).

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact.9, 26–31 (2008).

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng.46(5), 051016 (2007).
[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Gao, W.

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

Hong, E.

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng.46(5), 051016 (2007).
[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

Hsu, C. C.

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
[CrossRef]

Hsu, T. H.

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
[CrossRef]

Huang, H. L.

Huang, P. S.

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf.35(5), 725–738 (1995).
[CrossRef]

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind.114, 362–389 (1992).

Huang, W. M.

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf.38(3), 155–164 (1998).
[CrossRef]

Huang, Y. C.

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

Imai, N.

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng28, 273–274 (1994).

Jones, C. W.

Jywe, W. Y.

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
[CrossRef]

Kenta, U.

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

Kim, G. H.

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol.22(10), 105901 (2011).
[CrossRef]

Kim, J. A.

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol.12(9), 1495–1502 (2001).
[CrossRef]

Kim, J. S.

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

Kim, K. C.

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

Kim, S. H.

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol.12(9), 1495–1502 (2001).
[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

Kiyono, S.

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

Kuang, C.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact.9, 26–31 (2008).

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng.46(5), 051016 (2007).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Kwak, Y. K.

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

Leach, R. K.

Lee, C. B.

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol.22(10), 105901 (2011).
[CrossRef]

Lee, H. S.

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng28, 273–274 (1994).

Lee, H. W.

Lee, S. K.

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol.22(10), 105901 (2011).
[CrossRef]

Lee, S. W.

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng.127(4), 857–865 (2005).
[CrossRef]

Li, K.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

Liu, B.

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Liu, C. H.

C. H. Liu, H. L. Huang, and H. W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Appl. Opt.48(14), 2767–2777 (2009).
[CrossRef] [PubMed]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
[CrossRef]

Liu, X.

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

Mayor, R.

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng.127(4), 857–865 (2005).
[CrossRef]

Ni, J.

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng.127(4), 857–865 (2005).
[CrossRef]

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf.35(5), 725–738 (1995).
[CrossRef]

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind.114, 362–389 (1992).

Okafor, A. C.

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol.105(3), 407–420 (2000).
[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol.105(3), 394–406 (2000).
[CrossRef]

Park, C. H.

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

Peng, C. K.

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

Ryosyu, F.

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

Sandoz, P.

Shibuya, A.

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

Shimizu, S.

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng28, 273–274 (1994).

Sonko, O.

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

Tan, J.

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express21, 188494 (2013).

Thoms, S.

Tomizo, K.

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

Toshiyuki, T.

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

Tsai, C. Y.

C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision.29, 385–393 (2012).

Weaver, J. M.

Wu, S. M.

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind.114, 362–389 (1992).

You, F.

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.)122(17), 1530–1534 (2011).
[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng.19(3), 515–519 (2011).
[CrossRef]

Zhai, Y.

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol.44(4), 839–843 (2012).
[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin.28, 112–116 (2008).

Zhang, B.

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol.44(4), 839–843 (2012).
[CrossRef]

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.)122(17), 1530–1534 (2011).
[CrossRef]

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng.19(3), 515–519 (2011).
[CrossRef]

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin.28(12), 2344–2348 (2008).
[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin.28, 112–116 (2008).

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact.9, 26–31 (2008).

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Zhang, Y.

Zhang, Z.

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Zhu, F.

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express21, 188494 (2013).

Acta Opt. Sin. (2)

Y. Zhai, Q. Feng, and B. Zhang, “A novel method for roll measurement based on grating,” Acta Opt. Sin.28, 112–116 (2008).

R. Cao, B. Zhang, and Q. Feng, “A method for roll-angle measurement in multi-degree-of-freedom measuring system,” Acta Opt. Sin.28(12), 2344–2348 (2008).
[CrossRef]

Appl. Opt. (2)

ASME J. Eng. Ind. (1)

J. Ni, P. S. Huang, and S. M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors,” ASME J. Eng. Ind.114, 362–389 (1992).

Int. J. Japan Soc. Prec. Eng (1)

S. Shimizu, H. S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom,” Int. J. Japan Soc. Prec. Eng28, 273–274 (1994).

Int. J. Mach. Tools Manuf. (3)

K. C. Fan, M. J. Chen, and W. M. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” Int. J. Mach. Tools Manuf.38(3), 155–164 (1998).
[CrossRef]

P. S. Huang and J. Ni, “On-line error compensation of coordinate measuring machine,” Int. J. Mach. Tools Manuf.35(5), 725–738 (1995).
[CrossRef]

C. Chou, L. Y. Chou, C. K. Peng, Y. C. Huang, and K. C. Fan, “CCD-based geometrical error measurement using Fourier phase shift algorithm,” Int. J. Mach. Tools Manuf.37(5), 579–590 (1997).
[CrossRef]

Int. J. Prec. Eng. Manufact. (1)

Q. Feng, B. Zhang, and C. Kuang, “Four degree-of-freedom geometric measurement system with common-path compensation for laser beam drift,” Int. J. Prec. Eng. Manufact.9, 26–31 (2008).

J. Manuf. Sci. Eng. (1)

S. W. Lee, R. Mayor, and J. Ni, “Development of a six-degree-of-freedom geometric error measurement system for a meso-scale machine tool,” J. Manuf. Sci. Eng.127(4), 857–865 (2005).
[CrossRef]

J. Mater. Process. Technol. (2)

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part one: linear positional errors,” J. Mater. Process. Technol.105(3), 394–406 (2000).
[CrossRef]

A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer, part two: angular errors,” J. Mater. Process. Technol.105(3), 407–420 (2000).
[CrossRef]

J. Opt. Soc. Am. A-Opt. Im. Sci. Vision. (1)

C. Y. Tsai, “Exact analytical approach for six-degree-of-freedom measurement using image-orientation-change method,” J. Opt. Soc. Am. A-Opt. Im. Sci. Vision.29, 385–393 (2012).

Meas. Sci. Technol. (4)

U. Kenta, F. Ryosyu, O. Sonko, T. Toshiyuki, and K. Tomizo, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol.16(12), 2466–2472 (2005).
[CrossRef]

C. B. Lee, G. H. Kim, and S. K. Lee, “Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultra-precision linear stage,” Meas. Sci. Technol.22(10), 105901 (2011).
[CrossRef]

E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement measurement system for milli-structures,” Meas. Sci. Technol.12(9), 1495–1502 (2001).
[CrossRef]

C. Kuang, E. Hong, Q. Feng, B. Zhang, and Z. Zhang, “A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement,” Meas. Sci. Technol.18(12), 3795–3800 (2007).
[CrossRef]

Opt. Eng. (1)

C. Kuang, E. Hong, and Q. Feng, “High-accuracy method for measuring two-dimensional angles of a linear guideway,” Opt. Eng.46(5), 051016 (2007).
[CrossRef]

Opt. Express (1)

F. Zhu, J. Tan, and J. Cui, “Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation methods in compliance with the criteria with high accuracy and stability,” Opt. Express21, 188494 (2013).

Opt. Laser Technol. (2)

Q. Feng, B. Zhang, and C. Kuang, “A straightness measurement system using a single-mode fiber-coupled laser module,” Opt. Laser Technol.36(4), 279–283 (2004).
[CrossRef]

Y. Zhai, Q. Feng, and B. Zhang, “A simple roll measurement method based on a rectangular-prism,” Opt. Laser Technol.44(4), 839–843 (2012).
[CrossRef]

Opt. Lett. (1)

Opt. Prec. Eng. (1)

F. You, Q. Feng, and B. Zhang, “Straightness error measurement based on common-path compensation for laser beam drift,” Opt. Prec. Eng.19(3), 515–519 (2011).
[CrossRef]

Optik (Stuttg.) (1)

F. You, B. Zhang, and Q. Feng, “A novel laser straightness measurement method with a beam bend compensation,” Optik (Stuttg.)122(17), 1530–1534 (2011).
[CrossRef]

Precis. Eng. (3)

J. A. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom displacement measurement systems using cooperative targets,” Precis. Eng.26(1), 99–104 (2002).
[CrossRef]

K. C. Fan and M. J. Chen, “6-Degree-of-freedom measurement system for the accuracy of X-Y stages,” Precis. Eng.24(1), 15–23 (2000).
[CrossRef]

W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage,” Precis. Eng.30(1), 96–103 (2006).
[CrossRef]

Proc. SPIE (1)

C. Kuang, Q. Feng, B. Zhang, Z. Zhang, and S. Chen, “Measurement method of the roll angle,” Proc. SPIE6150, 61502F (2006).
[CrossRef]

Rev. Sci. Instrum. (3)

K. Li, C. Kuang, and X. Liu, “Small angular displacement measurement based on an autocollimator and a common-path compensation principle,” Rev. Sci. Instrum.84(1), 015108 (2013).
[CrossRef] [PubMed]

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage,” Rev. Sci. Instrum.76(5), 055110 (2005).
[CrossRef]

J. S. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum.71(8), 3214–3219 (2000).
[CrossRef]

Sen. Actuators A (1)

C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sen. Actuators A125(1), 100–108 (2005).
[CrossRef]

Other (1)

http://www.apisensor.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Model of 6DOF geometric motion errors.

Fig. 2
Fig. 2

Schematic for measuring straightness errors.

Fig. 3
Fig. 3

Multi-reflection method for improving straightness error measurement resolution.

Fig. 4
Fig. 4

Lens combination method for improving straightness error measurement resolution.

Fig. 5
Fig. 5

Method combining multi-reflections and lens combination for improving straightness error measurement resolution.

Fig. 6
Fig. 6

Schematic for measuring pitch and yaw.

Fig. 7
Fig. 7

Lens combination method for improving angular error measurement resolution

Fig. 8
Fig. 8

Schematic for measuring roll error using rhombic prism.

Fig. 9
Fig. 9

Common-path measurement and compensation for laser beam drift.

Fig. 10
Fig. 10

Schematic for simultaneously measuring 6DOF geometric motion errors.

Fig. 11
Fig. 11

Calibration experiments of developed system with API system.

Fig. 12
Fig. 12

Calibration results of 6DOF geometric motion errors. (a) Straightness errors along x-axis. (b) Straightness errors along y-axis. (c) Pitch. (d) Yaw. (e) Roll. (f) Length.

Fig. 13
Fig. 13

Measurement repeatability trials for developed system. (a) Straightness errors along x-axis. (b) Straightness errors along y-axis. (c) Pitch. (d) Yaw. (e) Roll. (f) Position errors.

Fig. 14
Fig. 14

Schematic towards improving measurement resolution of 6DOF system.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ΔX = Δ X 1 2 ΔY = Δ Y 1 2 .
θ X = Δ Y 2 2f θ Y = Δ X 2 2f .
θ Z = Δ X 2 Δ X 1 h .
Δα = tan 1 ( Δ X PS D 2 f 2 ) Δ X PS D 2 f 2 Δβ = tan 1 ( Δ Y PS D 2 f 2 ) Δ Y PS D 2 f 2 .
δx=Δ X Q D 3 δy=Δ Y Q D 3 .
ΔX = Δ X Q D 1 2 ± l × Δα ± δx ΔY = Δ Y Q D 1 2 ± l × Δβ ± δy.
θ X = Δ Y 2 2f ± Δβ θ Y = Δ X 2 2f ± Δα.

Metrics