Abstract

A linear array of avalanche photodiodes (APDs) comprising of 128 pixels was fabricated from InAs. The uniformity of the dark currents and avalanche gain was investigated at 77, 200 K and room temperature. The array shows highly uniform results apart from some defective pixels at the edge of the arrays. At 200 K and at a wavelength of 2.04 µm, we obtained an unmultiplied responsivity of 0.61 A/W at 0 V, along with a gain of 8.5 at a bias of 10 V.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
    [CrossRef]
  2. I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004).
    [CrossRef]
  3. A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
    [CrossRef]
  4. Z. Zhang, Y. Zhao, Y. Zhang, L. Wu, and J. Su, “A real-time noise filtering strategy for photon counting 3D imaging lidar,” Opt. Express21(8), 9247–9254 (2013).
    [CrossRef] [PubMed]
  5. A. Joshi and S. Datta, “High-speed, large-area, P-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE8533, 83533D–83542D (2012).
    [CrossRef]
  6. N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
    [CrossRef]
  7. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
    [CrossRef] [PubMed]
  8. Y. Shimizu, J. Ishii, Y. Kaneko, F. Sakuma, and A. Ono, “State of the arts of the infrared radiation thermometry standards in the middle temperature range at NMIJ,” SICE Annual Conference 2004. 1803–1807 (2004).
  9. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
    [CrossRef]
  10. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
    [CrossRef]
  11. S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
    [CrossRef]
  12. V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
    [CrossRef]
  13. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
    [CrossRef]
  14. R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
    [CrossRef]
  15. D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
    [CrossRef]
  16. O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
    [CrossRef]
  17. S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
    [CrossRef]
  18. P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
    [CrossRef]
  19. M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973).
    [CrossRef]
  20. P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

2013

2012

A. Joshi and S. Datta, “High-speed, large-area, P-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE8533, 83533D–83542D (2012).
[CrossRef]

N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

2011

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

2008

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

2006

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

2005

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

2004

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004).
[CrossRef]

1998

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

1973

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973).
[CrossRef]

Akimov, V. M.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Baets, R.

Baker, I. M.

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004).
[CrossRef]

Banerjee, K.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Bank, S. R.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Bazaev, N. A.

N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Beck, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Blessinger, M. A.

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

Bogaerts, W.

Boltar, K. O.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Brubaker, R. M.

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

Burlakov, I. D.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Campbell, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Campbell, J. C.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Cerutti, L.

Cohen, M. J.

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

Copley, J. W.

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004).
[CrossRef]

Cox, J. A.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Datta, S.

A. Joshi and S. Datta, “High-speed, large-area, P-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE8533, 83533D–83542D (2012).
[CrossRef]

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

David, J. P. R.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Duan, N.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Duncan, S. S.

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004).
[CrossRef]

Ettenberg, M. H.

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

Filachev, A. M.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Gao, H. H.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Gassenq, A.

Ghosh, S.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Goh, Y. L.

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

Grein, C.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Hattasan, N.

Holmes, A. L.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Hsu, C.-F.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Huang, S.

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

Itzler, M. A.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Johnson, W. C.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973).
[CrossRef]

Joshi, A.

A. Joshi and S. Datta, “High-speed, large-area, P-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE8533, 83533D–83542D (2012).
[CrossRef]

Ker, P. J.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Kinch, M.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Klimanov, E. A.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Krier, A.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Krishna, S.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Krysa, A.

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Lampert, M. A.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973).
[CrossRef]

Li, J. V.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Lu, Z.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Ma, F.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Maddox, S. J.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Mallick, S.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Mansvetov, N. G.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Mao, Y.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Marshall, A.

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

Marshall, A. R. J.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Masloboev, Y. P.

N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Mauk, M. G.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Mitra, P.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Muneeb, M.

Nair, H. P.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Ng, J. S.

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

O'Grady, M. T.

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

Ong, D. S.

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

Pathak, S.

Plis, E.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Ponomarenko, V. P.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Rafol, S. B.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Robinson, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Rodriguez, J. B.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Roelkens, G.

Ryckeboer, E.

Saginov, L. D.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Scritchfield, R.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Selishchev, S. V.

N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Shellenbarger, Z. A.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Sidhu, R.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Silversmith, D.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Sims, P. E.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Solyakov, V. N.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Stafeev, V. I.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Steer, M. J.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Su, J.

Sulima, O. V.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

Sun, W.

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Tan, C. H.

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

Tan, N.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Timofeev, A. A.

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Tournié, E.

Velicu, S.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Vines, P.

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

Wan, C.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

Woods, M. H.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973).
[CrossRef]

Wu, L.

Zhang, L.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

Zhang, S.

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

Zhang, Y.

Zhang, Z.

Zhao, J.

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93(11), 111107 (2008).
[CrossRef]

S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101(15), 151124 (2012).
[CrossRef]

Biomed. Eng. (N.Y.)

N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

IEE Proc., Optoelectron.

O. V. Sulima, M. G. Mauk, Z. A. Shellenbarger, J. A. Cox, J. V. Li, P. E. Sims, S. Datta, and S. B. Rafol, “Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors,” IEE Proc., Optoelectron.151(1), 1–5 (2004).
[CrossRef]

IEEE J. Quantum Electron.

P. J. Ker, A. Marshall, A. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011).
[CrossRef]

A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011).
[CrossRef]

IEEE Trans. Electron. Dev.

D. S. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs avalanche photodiode with type-II superlattice absorber for detection beyond 2 μm,” IEEE Trans. Electron. Dev.58(2), 486–489 (2011).
[CrossRef]

IET Electron. Lett.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C.-F. Hsu, and M. A. Itzler, “2.4 µm cutoff wavelength avalanche photodiode on InP substrate,” IET Electron. Lett.42(3), 20063415 (2006).
[CrossRef]

J. Electron. Mater.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006).
[CrossRef]

S. Ghosh, S. Mallick, K. Banerjee, C. Grein, S. Velicu, J. Zhao, D. Silversmith, J. B. Rodriguez, E. Plis, and S. Krishna, “Low-noise mid-wavelength infrared avalanche photodiodes,” J. Electron. Mater.37(12), 1764–1769 (2008).
[CrossRef]

Opt. Express

Phys. Status Solidi

P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status SolidiC9, 310–313 (2012).

Proc. SPIE

M. H. Ettenberg, M. A. Blessinger, M. T. O'Grady, S. Huang, R. M. Brubaker, and M. J. Cohen, “High-resolution SWIR arrays for imaging at night,” Proc. SPIE5406, 46–55 (2004).
[CrossRef]

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE2004(5406), 133–144 (2004).
[CrossRef]

A. Joshi and S. Datta, “High-speed, large-area, P-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE8533, 83533D–83542D (2012).
[CrossRef]

Semicond. Sci. Technol.

A. Krier, H. H. Gao, and Y. Mao, “A room temperature photovoltaic detector for the mid -infrared (1.8–3.4 μm) wavelength region,” Semicond. Sci. Technol.13(8), 950–956 (1998).
[CrossRef]

Semiconductors

V. I. Stafeev, K. O. Boltar, I. D. Burlakov, V. M. Akimov, E. A. Klimanov, L. D. Saginov, V. N. Solyakov, N. G. Mansvetov, V. P. Ponomarenko, A. A. Timofeev, and A. M. Filachev, “Mid- and far-IR focal plane arrays based on Hg1–xCdxTe photodiodes,” Semiconductors39(10), 1215–1223 (2005).
[CrossRef]

Solid-State Electron.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron.16(3), 381–394 (1973).
[CrossRef]

Other

Y. Shimizu, J. Ishii, Y. Kaneko, F. Sakuma, and A. Ono, “State of the arts of the infrared radiation thermometry standards in the middle temperature range at NMIJ,” SICE Annual Conference 2004. 1803–1807 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image of a section of the fabricated array, (b) magnified image of pixel and bond pad and an optical image of the array

Fig. 2
Fig. 2

(a) IV characteristics of a selected pixel (symbols) and a reference large area mesa (dashed lines) at temperatures of 295, 200 and 77 K, the 295 K photocurrent is also plotted (solid line), (b) dark current as a function of pixel number at fixed voltages.

Fig. 3
Fig. 3

Current as a function of pixel number for selected voltages at 200 (a) and 77 K (b).

Fig. 4
Fig. 4

(a) DC gain characteristics of selected pixels (symbols) and gain determined using phase-sensitive detection (dashed lines), (b) gain as a function of pixel number at fixed voltages all performed at 200 K.

Fig. 5
Fig. 5

Histogram distributions of avalanche gain at selected voltages. Measurements were performed at 200 K.

Fig. 6
Fig. 6

(a) Room temperature avalanche gain as a function of excitation position (b) Measured photocurrent when light is focused onto a probed pixel (circles) and when focused onto an adjacent pixel (triangles).

Metrics