Abstract

Spectral domain phase microscopy for high-sensitive and broad-dynamic-range quantitative phase imaging is presented. The phase retrieval is realized in the depth domain to maintain a high sensitivity, while the phase information obtained in the spectral domain is exploited to extend the dynamic range of optical path difference. Sensitivity advantage of phase retrieved in the depth domain over that in the spectral domain is thoroughly investigated. The performance of the proposed depth domain phase based approach is illustrated by phase imaging of a resolution target and an onion skin.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  2. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  4. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett.28(19), 1745–1747 (2003).
    [CrossRef] [PubMed]
  5. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  6. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  7. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  8. K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
    [CrossRef] [PubMed]
  9. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express17(13), 10681–10687 (2009).
    [CrossRef] [PubMed]
  10. Y. Verma, P. Nandi, K. D. Rao, M. Sharma, and P. K. Gupta, “Use of common path phase sensitive spectral domain optical coherence tomography for refractive index measurements,” Appl. Opt.50(25), E7–E12 (2011).
    [CrossRef]
  11. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett.31(10), 1462–1464 (2006).
    [CrossRef] [PubMed]
  12. P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett.35(17), 2840–2842 (2010).
    [CrossRef] [PubMed]
  13. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  14. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt.11(2), 024014 (2006).
    [CrossRef] [PubMed]
  15. T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A14(10), 2692–2701 (1997).
    [CrossRef]
  16. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt.45(3), 451–459 (2006).
    [CrossRef] [PubMed]
  17. H. C. Hendargo, M. Zhao, N. Shepherd, and J. A. Izatt, “Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography,” Opt. Express17(7), 5039–5051 (2009).
    [CrossRef] [PubMed]
  18. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett.35(15), 2612–2614 (2010).
    [CrossRef] [PubMed]
  19. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett.34(21), 3442–3444 (2009).
    [CrossRef] [PubMed]
  20. E. D. Moore and R. R. McLeod, “Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness,” Opt. Express19(9), 8117–8126 (2011).
    [CrossRef] [PubMed]
  21. Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett.36(4), 430–432 (2011).
    [CrossRef] [PubMed]
  22. C. Wang, Z. H. Ding, S. T. Mei, H. Yu, W. Hong, Y. Z. Yan, and W. D. Shen, “Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Lett.37(21), 4555–4557 (2012).
    [CrossRef] [PubMed]
  23. Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013).
    [CrossRef]
  24. K. Wang, Z. H. Ding, T. Wu, C. Wang, J. Meng, M. H. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009).
    [CrossRef] [PubMed]
  25. J. Meng, Z. H. Ding, J. Li, K. Wang, and T. Wu, “Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography,” Opt. Express18(2), 1261–1270 (2010).
    [CrossRef] [PubMed]

2013

Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013).
[CrossRef]

2012

2011

2010

2009

2007

2006

2005

2003

1997

Adler, D. C.

Akkin, T.

Badizadegan, K.

Bajraszewski, T.

Bhargava, R.

Bista, R.

Bouma, B. E.

Brand, R. E.

Cense, B.

Chen, M. H.

Chen, Z.

Choi, W.

Choma, M. A.

Clark, R. L.

Costantino, S.

K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
[CrossRef] [PubMed]

Creazzo, T. L.

Dasari, R. R.

de Boer, J. F.

Ding, Z. H.

Dion, C.

K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
[CrossRef] [PubMed]

Ellerbee, A. K.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt.11(2), 024014 (2006).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

Fang-Yen, C.

Feld, M. S.

Fercher, A. F.

Flynn, T. J.

Fujimoto, J. G.

Gupta, P. K.

Hendargo, H. C.

Hitzenberger, C. K.

Hong, W.

Huber, R.

Izatt, J. A.

Jenness, N. J.

Joo, C.

Kim, M. K.

Kowalczyk, A.

Leitgeb, R.

Lesk, M. R.

K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
[CrossRef] [PubMed]

Li, J.

Liu, Y.

Lue, N.

McLeod, R. R.

Mei, S. T.

Meng, J.

Moore, E. D.

Nandi, P.

Oh, S.

Ozaki, T.

K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
[CrossRef] [PubMed]

Park, B. H.

Park, Y.

Parshall, D.

Pierce, M. C.

Rao, B.

Rao, K. D.

Rinehart, M. T.

Sarunic, M. V.

Satterwhite, L. L.

Shaked, N. T.

Sharma, M.

Shen, W. D.

Shen, Y.

Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013).
[CrossRef]

Shepherd, N.

Singh, K.

K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
[CrossRef] [PubMed]

Targowski, P.

Tearney, G. J.

Vakoc, B. J.

Verma, Y.

Wang, C.

Wang, K.

Wang, L.

Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013).
[CrossRef]

Wang, P.

Wax, A.

Weinberg, S.

Wojtkowski, M.

Wu, T.

Xu, L.

Yan, Y. Z.

Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013).
[CrossRef]

C. Wang, Z. H. Ding, S. T. Mei, H. Yu, W. Hong, Y. Z. Yan, and W. D. Shen, “Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Lett.37(21), 4555–4557 (2012).
[CrossRef] [PubMed]

Yang, C. H.

Yaqoob, Z.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt.11(2), 024014 (2006).
[CrossRef] [PubMed]

Yu, H.

Yu, L.

Yun, S. H.

Zhang, J.

Zhao, M.

Zhu, Y.

Appl. Opt.

J. Biomed. Opt.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt.11(2), 024014 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Commun.

Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, and Y. Shen, “High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy,” Opt. Commun.303, 21–24 (2013).
[CrossRef]

Opt. Express

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

H. C. Hendargo, M. Zhao, N. Shepherd, and J. A. Izatt, “Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography,” Opt. Express17(7), 5039–5051 (2009).
[CrossRef] [PubMed]

Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express17(13), 10681–10687 (2009).
[CrossRef] [PubMed]

K. Wang, Z. H. Ding, T. Wu, C. Wang, J. Meng, M. H. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17(14), 12121–12131 (2009).
[CrossRef] [PubMed]

E. D. Moore and R. R. McLeod, “Phase-sensitive swept-source interferometry for absolute ranging with application to measurements of group refractive index and thickness,” Opt. Express19(9), 8117–8126 (2011).
[CrossRef] [PubMed]

J. Meng, Z. H. Ding, J. Li, K. Wang, and T. Wu, “Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography,” Opt. Express18(2), 1261–1270 (2010).
[CrossRef] [PubMed]

Opt. Lett.

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett.35(15), 2612–2614 (2010).
[CrossRef] [PubMed]

P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett.35(17), 2840–2842 (2010).
[CrossRef] [PubMed]

Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett.36(4), 430–432 (2011).
[CrossRef] [PubMed]

C. Wang, Z. H. Ding, S. T. Mei, H. Yu, W. Hong, Y. Z. Yan, and W. D. Shen, “Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Lett.37(21), 4555–4557 (2012).
[CrossRef] [PubMed]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett.34(21), 3442–3444 (2009).
[CrossRef] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett.31(10), 1462–1464 (2006).
[CrossRef] [PubMed]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett.28(19), 1745–1747 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett.30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

K. Singh, C. Dion, M. R. Lesk, T. Ozaki, and S. Costantino, “Spectral-domain phase microscopy with improved sensitivity using two-dimensional detector arrays,” Rev. Sci. Instrum.82(2), 023706 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation results in both domains of SDPM corresponding to a normalized interference signal arising from two reflectors at an OPD of 210 μm. Signal distribution in the depth domain (a) and in the spectral domain (b) corresponding to an ideal normalized interference signal. Depth distribution (c) and spectral distribution (d) from an additive white Gaussian noise under SNR of 70 dB. SNR distribution in the depth domain (e) and in the spectral domain (f).

Fig. 2
Fig. 2

Schematic of the spectral domain phase microscopy system.

Fig. 3
Fig. 3

(a) OPDs corresponding to 1024 repeated A-scans: by the spectral domain phase based SDPM (blue circles); by multiple spectral phases averaged SDPM (green diamonds); by the proposed depth domain phase based SDPM (red crosses). (b) The probability distribution of the measured OPD by spectral domain phase based SDPM. (c) The probability distribution of the measured OPD by multiple spectral phases averaged SDPM. (d) The probability distribution of the measured OPD by the proposed depth domain phase based SDPM.

Fig. 4
Fig. 4

Measurement of the OPD between coverslip and resolution target. (a) Sample configuration. (b) Quantitative phase image by conventional depth domain phase based SDPM. (c) Quantitative phase image by the proposed depth domain phase based SDPM. (d) Quantitative phase image by the spectral domain phase based SDPM.

Fig. 5
Fig. 5

(a) Image of onion skin cells by optical microscope. The scale bar indicates 30 μm. (b) Reconstructed phase image of onion skin cells by the proposed depth domain phase based SDPM.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I( k i )=2S( k i k 0 ) R R R S cos(2 z 0 k i )+α( k i ).
I( z i )= R R R S Γ( z i z 0 )exp[j2 k 0 ( z i z 0 )]+α( z i ),
I( z 0 δz)= R R R S Γ(δz)exp(j2 k 0 δz)+α( z 0 δz).
φ w ( z 0 δz)=φ( z 0 δz)2πfloor( φ( z 0 δz)+π 2π ),
I ˜ ( k i )=S( k i k 0 ) R R R S exp(j2 k i z 0 )+ α ˜ ( k i ),
φ w ( k i )=φ( k i )2πfloor( φ( k i )+π 2π ).
φ ( k i )=2 k i z 0 =2 k i z 0 +Δ φ k i .
φ( k i )= φ w ( k i )+2πfloor( φ ( k i )+π 2π ).
Δφ=arctan( 1 SNR ) 1 SNR = | σ noise | | I sample | ,
| I max ( z i )| | I ˜ max ( k i )| = π Δk 4 ln2 δk .
σ z 2 σ k 2 =N.
SN R z SN R k = π 16ln2 1 N ( Δk δk ) 2 .
Δ φ z Δ φ k = 4 ln2 π N δk Δk = 4 ln2 π N Nδk Δk .
φ ( z 0 δz)=φ( k 0 )2 k 0 ( z 0 δz)=2 k 0 δz±Δ φ k 0 .
φ( z 0 δz)= φ w ( z 0 δz)+2πfloor( φ ( z 0 δz)+π 2π ).
OPD= z 0 δz+ φ( z 0 δz) 2 k 0 .

Metrics