Abstract

In this paper we demonstrate experimentally the performance of a monostatic coherent lidar system under the influence of phase aberrations, especially the typically predominant spherical aberration (SA). The performance is evaluated by probing the spatial weighting function of the lidar system with different telescope configurations using a hard target. It is experimentally and numerically proven that the SA has a significant impact on lidar antenna efficiency and optimal beam truncation ratio. Furthermore, we demonstrate that both effective probing range and spatial resolution of the system are substantially influenced by SA and beam truncation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The final report of the EU FP6 project UPWIND, http://www.upwind.eu/
  2. J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
    [CrossRef]
  3. T. Fujii and T. Fukuchi, eds. Laser Remote Sensing(CRC Press, 2005).
  4. Y. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of pulsed coherent lidars. 1: theory,” Appl. Opt.29, 4111–4119(1990).
    [CrossRef] [PubMed]
  5. R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt.30, 5325–5352(1991).
    [CrossRef] [PubMed]
  6. B. J. Rye and R. G. Frehlich, “Optimal truncation and optical efficiency of an apertured coherent lidar focused on an incoherent backscatter target,” Appl. Opt.31, 2891–2899(1992).
    [CrossRef] [PubMed]
  7. J. Y. Wang, “Optimal truncation of a lidar transmitted beam,” Appl. Opt.27, 4470–4474(1988).
    [CrossRef] [PubMed]
  8. B. J. Rye, “Primary aberration contribution to incoherent backscatter heterodyne lidar resturns,” Appl. Opt.21, 839–844(1982)
    [CrossRef] [PubMed]
  9. ZEMAX Optical Design Program User’s Manual (July8, 2011) pp. 196–199.
  10. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt.5, 1588–1594(1966).
    [CrossRef] [PubMed]
  11. J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
    [CrossRef]

2010 (1)

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

2009 (1)

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

1992 (1)

1991 (1)

1990 (1)

1988 (1)

1982 (1)

1966 (1)

Bingöl, F.

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

Cariou, J. P.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Courtney, M.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Courtney, M. S.

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

Enevoldsen, K.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Frehlich, R. G.

Hardesty, R. M.

Kavaya, M. J.

Lindelöw, P. J. P.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Mann, J.

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Mikkelsen, T.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Parmentier, P.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Peña, A.

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

Post, M. J.

Rye, B. J.

Siegman, A. E.

Sjöholm, M.

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Wagner, R.

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Wang, J. Y.

Zhao, Y.

Appl. Opt. (6)

J. Atmos. Oceanic Technol. (1)

J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” J. Atmos. Oceanic Technol.27, 959–976(2010).
[CrossRef]

Meteorol. Z. (1)

J. Mann, J. P. Cariou, M. Courtney, P. Parmentier, T. Mikkelsen, R. Wagner, P. J. P. Lindelöw, M. Sjöholm, and K. Enevoldsen, “Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer,” Meteorol. Z.18, 135–140(2009).
[CrossRef]

Other (3)

T. Fujii and T. Fukuchi, eds. Laser Remote Sensing(CRC Press, 2005).

ZEMAX Optical Design Program User’s Manual (July8, 2011) pp. 196–199.

The final report of the EU FP6 project UPWIND, http://www.upwind.eu/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of the system setup. The size of the exit aperture is the diameter of L2. During the experiments several diffraction limited aspherical lenses, L1with different focal lengths are used in order to probe different ρvalues; while two different L2are used to introduce different degree of aberrations. The rotating belt is used to generated the Doppler signal for our measurements.

Fig. 2
Fig. 2

a) The OPDs of the two different L2used in our experiments. The OPDs are generated in Zemax with zero incident angle and circular symmetry. b) The calculated transverse irradiance profile of the output beam in different axial distances from the singlet L2. The focal length of L1is 15.6 mm in the simulation.

Fig. 3
Fig. 3

The observed and simulated beam profiles emitted from the singlet L2in different axial distances (10m, 40m, 60m and 80m) The focal length of lens L1is 15.6 mm.

Fig. 4
Fig. 4

a) The dash lines illustrates the numerically calculated antenna efficiency using Eq. (2)as a function of ρ; while the scattered points shows the measured lidar signal as a function of ρ. Both the simulation and the experimental data are acquired at a probing range of 80 m. b) The simulated antenna efficiency for the aberration-free case as a function of distance with and without the truncation effect (ρ= 0.8 for truncated case).

Fig. 5
Fig. 5

The measured weighting functions for six different transceiver configurations along with their theoretical counterparts. The simulations are acquired using the numerical integration of the fields including the truncation diffraction effects. The blue solid line represents the optimal ρof 0.3 for the singlet case, while the green dash line corresponds to the optimal ρof 0.8 for the doublet case. The dash lines in the graph to the right are the Lorentzian fit to the experimental data (scattered points).

Tables (2)

Tables Icon

Table 1 Relation between focal lengths of L1and ρ

Tables Icon

Table 2 Zernike fringe coefficients from Zemax

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = { E 0 exp { r 2 w 2 + i ϕ ( r ) + i ϕ S A ( r ) } for 0 r r L 2 0 for r > r L 2 , ϕ S A = 2 π * OPD ( r )
η a ( z ) = λ 2 R 2 A r I target 2 ( x , y , z ) d x d y
F = A 1 ( z R ) 2 + z 0 2

Metrics