Abstract

We describe the first experimental demonstration of a novel all-optical phase discrimination technique, which can separate the two orthogonal phase components of a signal onto different frequencies. This method exploits nonlinear mixing in a semiconductor optical amplifier (SOA) to separate a 10.65 Gbaud QPSK signal into two 10.65 Gb/s BPSK signals which are then demodulated using a delay interferometer (DI). Eye diagrams and spectral measurements verify correct operation and a conversion efficiency greater than 9 dB is observed on both output BPSK channels when compared with the input QPSK signal.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express21(10), 12713–12727(2013).
    [CrossRef] [PubMed]
  2. A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).
  3. L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett.59(5), 499–501(1991).
    [CrossRef]
  4. K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
    [CrossRef]
  5. R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
    [CrossRef]
  6. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15(6), 2981–2986(2007).
    [CrossRef] [PubMed]
  7. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
    [CrossRef]
  8. S. Diez, R. Ludwig, E. Patzak, H. G. Weber, G. Eisenstein, and R. Schimpe, “Four-wave mixing in semiconductor laser amplifiers: phase matching in configurations with three input waves,” in Lasers and Electro-Optics,1996. CLEO '96., Summaries of papers presented at the Conference on, 1996), 505–506.
  9. P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
    [CrossRef]
  10. R. Noé, “Phase Noise-Tolerant Synchronous QPSK/BPSK Baseband-Type Intradyne Receiver Concept With Feedforward Carrier Recovery,” J. Lightwave Technol.23(2), 802–808(2005).
    [CrossRef]

2013

2011

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

2007

2005

2003

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

1997

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

1994

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

1992

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
[CrossRef]

1991

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett.59(5), 499–501(1991).
[CrossRef]

Achiam, Y.

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

Bull, J. D.

Cho, P. S.

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

Diez, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Ellis, A. D.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15(6), 2981–2986(2007).
[CrossRef] [PubMed]

Garcia Gunning, F. C.

Godin, Y. A.

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

Grigoryan, V. S.

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

Gunning, F. C. G.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Healy, T.

Ibrahim, S. K.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Kakui, M.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
[CrossRef]

Kelly, B.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Kikuchi, K.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
[CrossRef]

Kindt, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Koltchanov, I.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Lee, T.-P.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
[CrossRef]

Ludwig, R.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Manning, R. J.

R. P. Webb, M. Power, and R. J. Manning, “Phase-sensitive frequency conversion of quadrature modulated signals,” Opt. Express21(10), 12713–12727(2013).
[CrossRef] [PubMed]

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Mark, J.

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

Mørk, J.

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

Noé, R.

Obermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

O'Carroll, J.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

O'Gorman, J.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Petermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Phelan, R.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Power, M.

Salamon, A.

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

Schmidt, C.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Sherlock, G.

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

Sygletos, S.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Tatham, M. C.

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

Tiemeijer, L. F.

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett.59(5), 499–501(1991).
[CrossRef]

Uskov, A.

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

Webb, R. P.

Weber, H. G.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

Weerasuriya, R.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

Zah, C.-E.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
[CrossRef]

Appl. Phys. Lett.

A. Uskov, J. Mørk, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65, 944–946(1994).

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett.59(5), 499–501(1991).
[CrossRef]

IEEE J. Quantum Electron.

K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156(1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron.3(5), 1131–1145(1997).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. G. Gunning, R. J. Manning, R. Phelan, J. O'Carroll, B. Kelly, J. O'Gorman, and A. D. Ellis, “Comparison of Frequency Symmetric Signal Generation From a BPSK Input Using Fiber and Semiconductor-Based Nonlinear Elements,” IEEE Photon. Technol. Lett.23(10), 651–653(2011).
[CrossRef]

P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y. Achiam, “Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber,” IEEE Photon. Technol. Lett.15(3), 473–475(2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

S. Diez, R. Ludwig, E. Patzak, H. G. Weber, G. Eisenstein, and R. Schimpe, “Four-wave mixing in semiconductor laser amplifiers: phase matching in configurations with three input waves,” in Lasers and Electro-Optics,1996. CLEO '96., Summaries of papers presented at the Conference on, 1996), 505–506.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of phase discrimination technique.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Phase discrimination of a low frequency sinusoidal phase modulated signal showing separated orthogonal phase components.

Fig. 4
Fig. 4

Input vs. Output Spectrum. The frequency axis is normalized to the comb spacing (42.6 GHz).

Fig. 5
Fig. 5

Recorded I and Q channel patterns fitted with corresponding PRBS data.

Fig. 6
Fig. 6

(a) I channel eye diagram, (b) Q channel eye diagram

Metrics