Abstract

We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011).
    [CrossRef] [PubMed]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
    [CrossRef]
  3. M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
    [CrossRef]
  4. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
    [CrossRef]
  5. J. E. Bertie, R. N. Jones, and C. D. Keefe, “Infrared intensities of liquids XII: accurate optical constants and molar absorption coefficients between 6225 and 500 cm-1 of Benzene at 25 °C, from spectra recorded in several laboratories,” Appl. Spectrosc.47, 891–911(1993).
    [CrossRef]
  6. S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
    [CrossRef] [PubMed]
  7. R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
    [CrossRef]
  8. L. a. Skvortsov and E. M. Maksimov, “Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces,” Quantum Electron.40, 565–578(2010).
    [CrossRef]
  9. M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976).
    [CrossRef] [PubMed]
  10. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
    [CrossRef] [PubMed]
  11. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
    [CrossRef]
  12. M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
    [CrossRef]
  13. S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65, 167–180(2002).
    [CrossRef]
  14. A. H. Pfund, “The dispersion of CS2and CCL4in the infrared,” J. Opt. Soc. Am.25, 351–354(1935).
    [CrossRef]
  15. J. H. Jaffe, “The measurement of refractive indexes of liquids in the infrared,” J. Opt. Soc. Am.41, 166–169(1951).
    [CrossRef]
  16. J. H. Jaffe and U. Oppenheim, “Infrared dispersion of liquids by critical angle refractometry,” J. Opt. Soc. Am.47, 782–784(1957).
    [CrossRef] [PubMed]
  17. R. J. Korniski and W. L. Wolfe, “Infrared refractometer measurements of adhesives,” Appl. Opt.17, 3138–3142(1978).
    [CrossRef] [PubMed]
  18. R. E. Kagarise and J. Mayfield, “Simple interferometer for dispersion measurements of liquids in the 2 – 22 μ m region,” J. Opt. Soc. Am.48, 430–431(1958).
    [CrossRef]
  19. P. N. Schatz, “Infrared dispersion measurements and integrated absorption coefficients for pure liquid Benzene,” J. Chem. Phys.32, 894–899(1960).
    [CrossRef]
  20. J. Hawranek and R. Jones, “The determination of the optical constants of Benzene and Chloroform in the IR by thin film transmission,” Spectrochim. Acta, Part A32, 111–123(1976).
    [CrossRef]
  21. J. Fahrenfort and W. M. Visser, “On the determination of optical constants in the infrared by attenuated total reflection,” Spectrochim. Acta18, 1103–1108(1962).
  22. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt.5, 1550–1567(1966).
    [CrossRef] [PubMed]
  23. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.
  24. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis(John Wiley & Sons, 1996).
  25. D. P. Almond and P. M. Patel, Photothermal Science and Techniques(Chapman & Hall, London, 1996), 1st ed.
  26. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.
  27. H. W. Becker, “Einsatz photothermischer Strahlablenkung zur Charakterisierung dünner optischer Schichten und Bestimmung der Temperaturleitfähigkeit von Gradientenwerkstoffen,” Ph.D. thesis (2000).
  28. C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
    [CrossRef]
  29. S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003).
    [CrossRef]
  30. D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
    [CrossRef]
  31. M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express19, 16508–16517(2011).
    [CrossRef] [PubMed]
  32. P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
    [CrossRef] [PubMed]
  33. Data sheet for Trichloroperfluorooctylsilane (TPS) from Sigma Aldrich.
  34. R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers,” J. Colloid Interface Sci.100, 465–496(1984).
    [CrossRef]

2013

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

2012

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
[CrossRef]

2011

S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011).
[CrossRef] [PubMed]

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
[CrossRef]

M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express19, 16508–16517(2011).
[CrossRef] [PubMed]

2010

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
[CrossRef] [PubMed]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
[CrossRef]

L. a. Skvortsov and E. M. Maksimov, “Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces,” Quantum Electron.40, 565–578(2010).
[CrossRef]

2009

P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
[CrossRef] [PubMed]

D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
[CrossRef]

2003

S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003).
[CrossRef]

2002

S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65, 167–180(2002).
[CrossRef]

1993

1992

C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
[CrossRef]

1984

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers,” J. Colloid Interface Sci.100, 465–496(1984).
[CrossRef]

1978

1976

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976).
[CrossRef] [PubMed]

J. Hawranek and R. Jones, “The determination of the optical constants of Benzene and Chloroform in the IR by thin film transmission,” Spectrochim. Acta, Part A32, 111–123(1976).
[CrossRef]

1966

1962

J. Fahrenfort and W. M. Visser, “On the determination of optical constants in the infrared by attenuated total reflection,” Spectrochim. Acta18, 1103–1108(1962).

1960

P. N. Schatz, “Infrared dispersion measurements and integrated absorption coefficients for pure liquid Benzene,” J. Chem. Phys.32, 894–899(1960).
[CrossRef]

1958

1957

1951

1935

Albrecht, A. C.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976).
[CrossRef] [PubMed]

Almond, D. P.

D. P. Almond and P. M. Patel, Photothermal Science and Techniques(Chapman & Hall, London, 1996), 1st ed.

Anic, K.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
[CrossRef]

Barnett, S.

S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003).
[CrossRef]

Bass, M.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Becker, H. W.

H. W. Becker, “Einsatz photothermischer Strahlablenkung zur Charakterisierung dünner optischer Schichten und Bestimmung der Temperaturleitfähigkeit von Gradientenwerkstoffen,” Ph.D. thesis (2000).

Bertie, J. E.

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis(John Wiley & Sons, 1996).

Brandstetter, M.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
[CrossRef]

Bronstein, I. N.

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Celebrano, M.

M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
[CrossRef]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

DeCusatis, C.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Dixon, P.

D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
[CrossRef]

P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
[CrossRef] [PubMed]

Enoch, J.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Fabre, C.

S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003).
[CrossRef]

Fahrenfort, J.

J. Fahrenfort and W. M. Visser, “On the determination of optical constants in the infrared by attenuated total reflection,” Spectrochim. Acta18, 1103–1108(1962).

Farahi, R. H.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
[CrossRef]

Fischer, P.

S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011).
[CrossRef] [PubMed]

M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express19, 16508–16517(2011).
[CrossRef] [PubMed]

Fomichova, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Gaiduk, A.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
[CrossRef] [PubMed]

Genner, A.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Gretz, N.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Greve, J.

C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
[CrossRef]

Grooth, B.-t. G. D.

C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
[CrossRef]

Hawranek, J.

J. Hawranek and R. Jones, “The determination of the optical constants of Benzene and Chloroform in the IR by thin film transmission,” Spectrochim. Acta, Part A32, 111–123(1976).
[CrossRef]

Herrmann, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Howell, J.

D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
[CrossRef]

P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
[CrossRef] [PubMed]

Hulst, N. F. V.

C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
[CrossRef]

Jaffe, J. H.

Jeon, S.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

Jones, R.

J. Hawranek and R. Jones, “The determination of the optical constants of Benzene and Chloroform in the IR by thin film transmission,” Spectrochim. Acta, Part A32, 111–123(1976).
[CrossRef]

Jones, R. N.

Jordan, A.

D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
[CrossRef]

P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
[CrossRef] [PubMed]

Kagarise, R. E.

Keefe, C. D.

Kim, S.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

Kogelnik, H.

Korniski, R. J.

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Kukura, P.

M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
[CrossRef]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
[CrossRef]

Lakshminarayanan, V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Lee, D.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

Lendl, B.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Li, G.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Li, T.

Liu, X.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

Long, M. E.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976).
[CrossRef] [PubMed]

Lüdeke, S.

S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011).
[CrossRef] [PubMed]

MacDonald, C.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Mahajan, V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Maitre, A.

S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003).
[CrossRef]

Maksimov, E. M.

L. a. Skvortsov and E. M. Maksimov, “Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces,” Quantum Electron.40, 565–578(2010).
[CrossRef]

Maoz, R.

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers,” J. Colloid Interface Sci.100, 465–496(1984).
[CrossRef]

Mayfield, J.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Muehlig, H.

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.

Musiol, G.

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.

Neudecker, S.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Oppenheim, U.

Orrit, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
[CrossRef] [PubMed]

Passian, A.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
[CrossRef]

Patel, P. M.

D. P. Almond and P. M. Patel, Photothermal Science and Techniques(Chapman & Hall, London, 1996), 1st ed.

Petrich, W.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Pfeifer, M.

S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011).
[CrossRef] [PubMed]

M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express19, 16508–16517(2011).
[CrossRef] [PubMed]

Pfund, A. H.

Pucci, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Putman, C. A. J.

C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
[CrossRef]

Renn, A.

M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
[CrossRef]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
[CrossRef]

Ruijgrok, P. V.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
[CrossRef] [PubMed]

Sagiv, J.

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers,” J. Colloid Interface Sci.100, 465–496(1984).
[CrossRef]

Sandoghdar, V.

M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
[CrossRef]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
[CrossRef]

Schatz, P. N.

P. N. Schatz, “Infrared dispersion measurements and integrated absorption coefficients for pure liquid Benzene,” J. Chem. Phys.32, 894–899(1960).
[CrossRef]

Semendjajew, K. A.

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.

Singh, S.

S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65, 167–180(2002).
[CrossRef]

Skvortsov, L. a.

L. a. Skvortsov and E. M. Maksimov, “Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces,” Quantum Electron.40, 565–578(2010).
[CrossRef]

Starling, D.

D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
[CrossRef]

P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
[CrossRef] [PubMed]

Stryland, E. V.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

Swofford, R. L.

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976).
[CrossRef] [PubMed]

Tetard, L.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
[CrossRef]

Thundat, T.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Van Neste, C.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

Visser, W. M.

J. Fahrenfort and W. M. Visser, “On the determination of optical constants in the infrared by attenuated total reflection,” Spectrochim. Acta18, 1103–1108(1962).

Vrancic, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Wolfe, W. L.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Yorulmaz, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
[CrossRef] [PubMed]

Analyst

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198(2011).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487, 1–18(2010).
[CrossRef]

Eur. Phys. J. D

S. Barnett, C. Fabre, and A. Maitre, “Ultimate quantum limits for resolution of beam displacements,” Eur. Phys. J. D22, 513–519(2003).
[CrossRef]

J. Am. Chem. Soc.

S. Lüdeke, M. Pfeifer, and P. Fischer, “Quantum-cascade laser-based vibrational circular dichroism,” J. Am. Chem. Soc.133, 5704–5707(2011).
[CrossRef] [PubMed]

J. Appl. Phys.

C. A. J. Putman, B.-t. G. D. Grooth, N. F. V. Hulst, and J. Greve, “A detailed analysis of the optical beam deflection technique for use in atomic force microscopy,” J. Appl. Phys.72, 6–12(1992).
[CrossRef]

J. Chem. Phys.

P. N. Schatz, “Infrared dispersion measurements and integrated absorption coefficients for pure liquid Benzene,” J. Chem. Phys.32, 894–899(1960).
[CrossRef]

J. Colloid Interface Sci.

R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers,” J. Colloid Interface Sci.100, 465–496(1984).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. Lett.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Single-molecule sensitivity in optical absorption at room temperature,” J. Phys. Chem. Lett.1, 3323–3327(2010).
[CrossRef]

J. Phys. D: Appl. Phys.

R. H. Farahi, A. Passian, L. Tetard, and T. Thundat, “Pump-probe photothermal spectroscopy using quantum cascade lasers,” J. Phys. D: Appl. Phys.45, 125101(2012).
[CrossRef]

Nat. Photonics

M. Celebrano, P. Kukura, A. Renn, and V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics5, 95–98(2011).
[CrossRef]

Opt. Express

Phys. Rev. A

D. Starling, P. Dixon, A. Jordan, and J. Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values,” Phys. Rev. A80, 041803(2009).
[CrossRef]

Phys. Rev. Lett.

P. Dixon, D. Starling, A. Jordan, and J. Howell, “Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification,” Phys. Rev. Lett.102, 173601(2009).
[CrossRef] [PubMed]

Phys. Scr.

S. Singh, “Refractive index measurement and its applications,” Phys. Scr.65, 167–180(2002).
[CrossRef]

Procedia Engineering

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable Mid-IR lasers: a new avenue to robust and versatile physical chemosensors,” Procedia Engineering5, 1001–1004(2010).
[CrossRef]

Quantum Electron.

L. a. Skvortsov and E. M. Maksimov, “Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces,” Quantum Electron.40, 565–578(2010).
[CrossRef]

Sci. Rep.

S. Kim, D. Lee, X. Liu, C. Van Neste, S. Jeon, and T. Thundat, “Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser.” Sci. Rep.3, 1111(2013).
[CrossRef] [PubMed]

Science

M. E. Long, R. L. Swofford, and A. C. Albrecht, “Thermal lens technique: a new method of absorption spectroscopy,” Science191, 183–185(1976).
[CrossRef] [PubMed]

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast.” Science330, 353–356(2010).
[CrossRef] [PubMed]

Spectrochim. Acta

J. Fahrenfort and W. M. Visser, “On the determination of optical constants in the infrared by attenuated total reflection,” Spectrochim. Acta18, 1103–1108(1962).

Spectrochim. Acta, Part A

J. Hawranek and R. Jones, “The determination of the optical constants of Benzene and Chloroform in the IR by thin film transmission,” Spectrochim. Acta, Part A32, 111–123(1976).
[CrossRef]

Other

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(McGraw-Hill Professional, 2009), 3rd ed.

S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis(John Wiley & Sons, 1996).

D. P. Almond and P. M. Patel, Photothermal Science and Techniques(Chapman & Hall, London, 1996), 1st ed.

I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Muehlig, Handbook of Mathematics(SpringerBerlin, 2007), 5th ed.

H. W. Becker, “Einsatz photothermischer Strahlablenkung zur Charakterisierung dünner optischer Schichten und Bestimmung der Temperaturleitfähigkeit von Gradientenwerkstoffen,” Ph.D. thesis (2000).

Data sheet for Trichloroperfluorooctylsilane (TPS) from Sigma Aldrich.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the MIR-refractometer (top-down view). The linearly polarized light of a QCL is expanded, collimated and finally refocused onto the entrance side of ZnSe-prism. The inset is a detailed view of the prism (side-view).

Fig. 2
Fig. 2

Detailed views of the beam path inside the prism for a) geometrical ray optics b) a Gaussian beam profile.

Fig. 3
Fig. 3

Calculations of the predicted intensity profile for model liquids with different values of the refractive index ñlusing Eq. (5)with w0= 30 μm, α0= 25°, θ1= 45° and np= 2.4.

Fig. 4
Fig. 4

Image analysis and data processing. Shown are two camera images, one without (left) and one with (right) liquid sample. The gray scale values of the images are added as indicated and Eq. (5)is then fitted to the one-dimensional profiles (depicted below the camera images) to yield nand k

Fig. 5
Fig. 5

Results of MIR refractometer measurements of dichloromethane (DCM) using Gaussian beam profiles in the fits are compared to direct FTIR absorption measurements. All data have been scaled by sample concentration. In the FTIR data nhas been determined form the corresponding kvalues using a Kramers-Kronig transformation. The RMS error and the mean image noise are plotted in the upper panels (see text for details).

Fig. 6
Fig. 6

a) Schematic of the beam-deflection beneath a homogeneously illuminated absorbing surface. b) Schematic of the experimental setup consisting of the excitation beam-path (dark red) and the probe beam-path (red). The QCL is directed via a mechanical chopper and a focusing lens onto the sample. The probe laser is a fiber-coupled red diode-laser with an adjustable collimator routed with three mirrors to a position sensitive diode (PSD). Inclusion of a beam splitter allows the same setup to be used for interferometric (Sagnac) measurements. The beam path of the QCL and the probe laser are brought to coincide on the surface of a zinc-selenide-slab (shown enlarged in inset).

Fig. 7
Fig. 7

Photo-thermal absorption-spectra of a 25 μm thick film of deuterated chloroform (direct PSD detection). The FTIR spectrum was obtained from a 100 μm thick film.

Fig. 8
Fig. 8

Comparison of two photo-thermally gained absorption-spectra (upper diagram, interferometric detection) with the corresponding absorbance FTIR spectrum (lower diagram) of a molecular monolayer of Trichloroperfluorooctylsilane (TPS) and the ATR-FTIR-spectrum of the undiluted liquid silane (data taken from [33]). The drastic rise of the FTIR-monolayer-signal can be attributed to a strong thin-film-interference, which the photo-thermal technique is insensitive to.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

γ ( x ) = γ 0 arcsin [ x R ( x ) ] = θ 1 + arcsin [ 1 n p sin α 0 ] arcsin [ x R ( x ) ]
R ( x ) = z ( x ) [ 1 + ( z 0 z ( x ) ) 2 ] with z 0 = π w 0 2 λ / n p
γ ( x ) = γ 0 arcsin { x z 1 + x tan γ 0 [ 1 + ( z 0 z 1 + x tan γ 0 ) 2 ] 1 }
r p ( x ) = n ˜ l 2 cos θ x n p n ˜ l 2 n p 2 sin 2 γ ( x ) n ˜ l 2 cos θ x + n p n ˜ l 2 n p 2 sin 2 γ ( x )
I 1 ( x , y ) = I 0 ( x , y ) | r p ( x ) | 2 with I 0 ( x , y ) = I 0 e 2 x 2 + y 2 w 2
δ φ = 1 n n T S T × d s
T ( x , t ) t k ρ c Δ T ( x , t ) = 1 ρ c P ( x , t ) V
k ( T z ) z = 0 = α I 0 2 ( 1 + e i ω t )
T ( z , t ) = α I 0 2 ρ c k ω exp ( z μ ) exp [ i ( ω t z μ π 4 ) ]
δ φ ~ 1 n n T α P 2 π k w q c l exp ( w probe μ ) cos ( ω t ϕ ) with ϕ = π 4 + w probe μ
s α = 1 α σ I 0 I 0
s α = σ I 0 I 0

Metrics