Abstract

Although confocal infrared (IR) absorption micro-spectroscopy is well established for far-field chemical imaging, its scope remains restricted since diffraction limits the spatial resolution to values a little above half the radiation wavelength. Yet, the successful implementations of below-the-diffraction limit far-field fluorescence microscopies using saturated irradiation patterns for example for stimulated-emission depletion and saturated structured-illumination suggest the possibility of using a similar optical patterning strategy for infrared absorption mapping at high resolution. Simulations are used to show that the simple mapping of the difference in transmitted/reflected IR energy between a saturated vortex-shaped beam and a Gaussian reference with a confocal microscope affords the generation of high-resolution vibrational absorption images. On the basis of experimentally relevant parameters, the simulations of the differential absorption scheme reveal a spatial resolution better than a tenth of the wavelength for incident energies about a decade above the saturation threshold. The saturated structured illumination concepts are thus expected to be compatible with the establishment of point-like point-spread functions for measuring the absorbance of samples with a scanning confocal microscope recording the differential transmission/reflection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
    [CrossRef] [PubMed]
  2. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002).
    [CrossRef]
  3. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869(2008).
    [CrossRef] [PubMed]
  4. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
    [CrossRef] [PubMed]
  5. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388(2010).
    [CrossRef] [PubMed]
  6. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
    [CrossRef]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
    [CrossRef] [PubMed]
  8. G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
    [CrossRef] [PubMed]
  9. H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
    [CrossRef] [PubMed]
  10. G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619(2001).
    [CrossRef]
  11. D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58(2005).
  12. H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
    [CrossRef] [PubMed]
  13. E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
    [CrossRef] [PubMed]
  14. P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007).
    [CrossRef] [PubMed]
  15. E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008).
    [CrossRef] [PubMed]
  16. P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21(2003).
    [CrossRef]
  17. H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
    [CrossRef] [PubMed]
  18. G. Ellis, G. Santoro, M. A. Gómez, and C. Marco, “Synchrotron IR microspectroscopy: opportunities in polymer science,” IOP Conf. Ser.: Mater. Sci. Eng. 14, 012019 (2010).
    [CrossRef]
  19. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
    [CrossRef] [PubMed]
  20. G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58(1997).
    [CrossRef]
  21. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
    [CrossRef] [PubMed]
  22. F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947(2011).
    [CrossRef] [PubMed]
  23. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137(1999).
    [CrossRef]
  24. S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004).
    [CrossRef] [PubMed]
  25. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782(1994).
    [CrossRef] [PubMed]
  26. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
    [CrossRef] [PubMed]
  27. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
    [CrossRef]
  28. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
    [CrossRef] [PubMed]
  29. E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009).
    [CrossRef]
  30. S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497(1995).
    [CrossRef]
  31. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007).
    [CrossRef] [PubMed]
  32. J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356(2012).
    [CrossRef] [PubMed]
  33. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086(2005).
    [CrossRef] [PubMed]
  34. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
    [CrossRef] [PubMed]
  35. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006).
    [CrossRef] [PubMed]
  36. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
    [CrossRef] [PubMed]
  37. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
    [CrossRef] [PubMed]
  38. O. Schwartz and D. Oron, “Using variable pupil filters to optimize the resolution in multiphoton and saturable fluorescence confocal microscopy,” Opt. Lett.34(4), 464–466(2009).
    [CrossRef] [PubMed]
  39. Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
    [CrossRef]
  40. O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664(2009).
    [CrossRef]
  41. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
    [CrossRef] [PubMed]
  42. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
    [CrossRef] [PubMed]
  43. W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
    [CrossRef]
  44. C. Silien, N. Liu, N. Hendaoui, S. A. M. Tofail, and A. Peremans, “A framework for far-field infrared absorption microscopy beyond the diffraction limit,” Opt. Express20(28), 29694–29704(2012).
    [CrossRef] [PubMed]
  45. T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
    [CrossRef]
  46. D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009).
    [CrossRef] [PubMed]
  47. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371(2007).
    [CrossRef] [PubMed]
  48. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
    [CrossRef]
  49. W. Demtroder, Laser spectroscopy: basic concepts and instrumentation(Springer-Verlag, 2003).
  50. D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990).
    [CrossRef]
  51. A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
    [CrossRef]
  52. H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
    [CrossRef]
  53. R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
    [CrossRef]
  54. J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107(1998).
    [CrossRef]
  55. G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008).
    [CrossRef]
  56. W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
    [CrossRef]
  57. L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425(2000).
    [CrossRef]
  58. M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002).
    [CrossRef]
  59. H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
    [CrossRef]
  60. I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190(1999).
    [CrossRef]
  61. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87(2000).
    [CrossRef] [PubMed]
  62. L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, 2006).
  63. B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
    [CrossRef]
  64. F. K. Tittel, D. Richter, and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds, Topics Appl. Phys. 89, 445-516 (2003).

2013 (2)

Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
[CrossRef]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

2012 (3)

C. Silien, N. Liu, N. Hendaoui, S. A. M. Tofail, and A. Peremans, “A framework for far-field infrared absorption microscopy beyond the diffraction limit,” Opt. Express20(28), 29694–29704(2012).
[CrossRef] [PubMed]

J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356(2012).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

2011 (6)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947(2011).
[CrossRef] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
[CrossRef] [PubMed]

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
[CrossRef] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

2010 (4)

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388(2010).
[CrossRef] [PubMed]

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
[CrossRef] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
[CrossRef]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

2009 (8)

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009).
[CrossRef] [PubMed]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664(2009).
[CrossRef]

O. Schwartz and D. Oron, “Using variable pupil filters to optimize the resolution in multiphoton and saturable fluorescence confocal microscopy,” Opt. Lett.34(4), 464–466(2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
[CrossRef] [PubMed]

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009).
[CrossRef]

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

2008 (6)

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869(2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
[CrossRef] [PubMed]

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008).
[CrossRef]

2007 (4)

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371(2007).
[CrossRef] [PubMed]

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007).
[CrossRef] [PubMed]

2006 (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006).
[CrossRef] [PubMed]

2005 (3)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086(2005).
[CrossRef] [PubMed]

D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58(2005).

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

2004 (2)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004).
[CrossRef] [PubMed]

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

2003 (2)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21(2003).
[CrossRef]

2002 (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002).
[CrossRef]

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002).
[CrossRef]

2001 (1)

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619(2001).
[CrossRef]

2000 (3)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87(2000).
[CrossRef] [PubMed]

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425(2000).
[CrossRef]

1999 (3)

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190(1999).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137(1999).
[CrossRef]

1998 (1)

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107(1998).
[CrossRef]

1997 (1)

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58(1997).
[CrossRef]

1995 (2)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497(1995).
[CrossRef]

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
[CrossRef]

1994 (1)

1991 (3)

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

1990 (1)

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990).
[CrossRef]

1980 (1)

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
[CrossRef]

Achermann, M.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

Anderson, L. M.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

Bakker, H. J.

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

Balu, M.

Bartel, M.

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008).
[CrossRef]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006).
[CrossRef] [PubMed]

Bechtel, H. A.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
[CrossRef] [PubMed]

Beeker, W. P.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

Belkin, M. A.

Bhargava, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Bielefeldt, H.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

Blase, X.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
[CrossRef]

Boller, K.-J.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002).
[CrossRef]

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007).
[CrossRef] [PubMed]

Bryant, G. W.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
[CrossRef] [PubMed]

Bückers, J.

Carr, G. L.

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619(2001).
[CrossRef]

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58(1997).
[CrossRef]

Chen, Z.

Chin, R. P.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
[CrossRef]

Cleff, C.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

Cohn, K.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

Davidson, M. W.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

de Groot, F. M. F.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

Dhar, L.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

Dlott, D. D.

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425(2000).
[CrossRef]

Donath, E.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

Dubois, L. H.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

Dumas, P.

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007).
[CrossRef] [PubMed]

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21(2003).
[CrossRef]

Dyba, M.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

Estrela-Lopis, I.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

Fallnich, C.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

Fendt, A.

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
[CrossRef]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Fujii, M.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Graener, H.

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008).
[CrossRef]

Groß, P.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

Gross, P.

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
[CrossRef]

Gustafsson, M. G. L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086(2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87(2000).
[CrossRef] [PubMed]

Guzonas, D. A.

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990).
[CrossRef]

Haeberlé, O.

O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664(2009).
[CrossRef]

Hair, M. L.

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990).
[CrossRef]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

Hanley, Q. S.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
[CrossRef]

Hao, Z.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
[CrossRef] [PubMed]

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

Harris, A. L.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

Hartl, I.

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190(1999).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Heintzmann, R.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Hell, S. W.

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371(2007).
[CrossRef] [PubMed]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007).
[CrossRef] [PubMed]

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497(1995).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782(1994).
[CrossRef] [PubMed]

Hendaoui, N.

Herek, J. L.

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

Hirschmugl, C. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Holman, H.-Y. N.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
[CrossRef] [PubMed]

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
[CrossRef] [PubMed]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

Iketaki, Y.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

Iwaki, L. K.

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425(2000).
[CrossRef]

Jakobs, S.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

Johansson, G. A.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

Jovin, T. M.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Jung, J.

Jurna, M.

Kaiser, W.

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
[CrossRef]

Kajdacsy-Balla, A.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Kamps-Hughes, N.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Kastrup, L.

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009).
[CrossRef] [PubMed]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
[CrossRef] [PubMed]

Keilmann, F.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137(1999).
[CrossRef]

Keller, J.

Keller, U.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

Kim, H.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
[CrossRef] [PubMed]

Kim, S. K.

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137(1999).
[CrossRef]

Korterik, J. P.

Kox, M. H. F.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

Kranitzky, W.

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
[CrossRef]

Kroug, M.

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497(1995).
[CrossRef]

Kuang, C.

Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
[CrossRef]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
[CrossRef]

Kwon, J.

Lagendijk, A.

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

Laubereau, A.

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002).
[CrossRef]

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107(1998).
[CrossRef]

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
[CrossRef]

Lee, C. J.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

Lerch, P.

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008).
[CrossRef] [PubMed]

Lettenberger, M.

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002).
[CrossRef]

Levenson, E.

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008).
[CrossRef] [PubMed]

Levinos, N. J.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Lim, Y.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

Liu, G.

Liu, N.

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
[CrossRef]

Löbau, J.

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107(1998).
[CrossRef]

Louie, S. G.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
[CrossRef]

Lu, F.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Macklin, J. J.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

Martin, M. C.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
[CrossRef] [PubMed]

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008).
[CrossRef] [PubMed]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

McNaughton, D.

D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58(2005).

Medda, R.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
[CrossRef] [PubMed]

Michaels, C. A.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
[CrossRef] [PubMed]

Miles, R.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

Miller, L.

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21(2003).
[CrossRef]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Moya, S. E.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

Munroe, P.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Nailon, J.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Nasse, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Nechay, B. A.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

Offerhaus, H. L.

Oron, D.

Otto, C.

Palanker, D.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

Peremans, A.

Planken, P. C. M.

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

Potma, E. O.

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388(2010).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

Rego, E. H.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009).
[CrossRef]

Rojas, E.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

Romero, G.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

Rothberg, L.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Sarafis, V.

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Saß, M.

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002).
[CrossRef]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

Schönle, A.

Schwartz, O.

Seifert, G.

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008).
[CrossRef]

Shao, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

Shen, Y. R.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
[CrossRef]

Siegner, U.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

Silien, C.

Simanovskii, D.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

Simon, B.

O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664(2009).
[CrossRef]

Smith, T.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

Sockalingum, G. D.

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007).
[CrossRef] [PubMed]

Stavitski, E.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

Stranick, S. J.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
[CrossRef] [PubMed]

Sulé-Suso, J.

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007).
[CrossRef] [PubMed]

Swart, I.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

Tofail, S. A. M.

Toyama, N.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

Toytman, I.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

Tripp, C. P.

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990).
[CrossRef]

Tromberg, B. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002).
[CrossRef]

Walsh, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
[CrossRef]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
[CrossRef]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Watanabe, T.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

Watanabe, Y.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

Weckhuysen, B. M.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

Westphal, V.

Wichmann, J.

Wildanger, D.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
[CrossRef] [PubMed]

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009).
[CrossRef]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009).
[CrossRef] [PubMed]

Williams, G. P.

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58(1997).
[CrossRef]

Winoto, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

Wozei, E.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002).
[CrossRef]

Yang, H.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006).
[CrossRef] [PubMed]

Zinth, W.

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190(1999).
[CrossRef]

Anal. Chem. (2)

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009).
[CrossRef] [PubMed]

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497(1995).
[CrossRef]

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002).
[CrossRef]

Appl. Spectros. (1)

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990).
[CrossRef]

Aust. Biochem. (1)

D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58(2005).

Chem. Phys. Lett. (2)

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425(2000).
[CrossRef]

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002).
[CrossRef]

Curr. Opin. Neurobiol. (1)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004).
[CrossRef] [PubMed]

Europhys. Lett. (2)

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009).
[CrossRef]

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995).
[CrossRef]

Infra. Phys. Tech. (1)

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011).
[CrossRef] [PubMed]

J. Chem. Phys. (3)

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991).
[CrossRef]

J. Microsc. (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87(2000).
[CrossRef] [PubMed]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009).
[CrossRef] [PubMed]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010).
[CrossRef]

Micron (1)

R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011).
[CrossRef] [PubMed]

Nat. Methods (2)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009).
[CrossRef]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137(1999).
[CrossRef]

Open Phys. Chem. J. (1)

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008).
[CrossRef]

Opt. Commun. (2)

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190(1999).
[CrossRef]

O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664(2009).
[CrossRef]

Opt. Express (8)

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009).
[CrossRef] [PubMed]

C. Silien, N. Liu, N. Hendaoui, S. A. M. Tofail, and A. Peremans, “A framework for far-field infrared absorption microscopy beyond the diffraction limit,” Opt. Express20(28), 29694–29704(2012).
[CrossRef] [PubMed]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371(2007).
[CrossRef] [PubMed]

F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947(2011).
[CrossRef] [PubMed]

J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356(2012).
[CrossRef] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388(2010).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869(2008).
[CrossRef] [PubMed]

Opt. Laser Technol. (1)

Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013).
[CrossRef]

Opt. Lett. (2)

Philos. Trans. Roy. Soc. A (1)

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980).
[CrossRef]

Phys. Rev. A (1)

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010).
[CrossRef]

Phys. Rev. Lett. (1)

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086(2005).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005).
[CrossRef] [PubMed]

Proc. SPIE (3)

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007).
[CrossRef]

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58(1997).
[CrossRef]

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107(1998).
[CrossRef]

Rev. Sci. Instrum. (3)

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004).
[CrossRef]

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999).
[CrossRef]

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619(2001).
[CrossRef]

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013).
[CrossRef] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21(2003).
[CrossRef]

Other (4)

G. Ellis, G. Santoro, M. A. Gómez, and C. Marco, “Synchrotron IR microspectroscopy: opportunities in polymer science,” IOP Conf. Ser.: Mater. Sci. Eng. 14, 012019 (2010).
[CrossRef]

W. Demtroder, Laser spectroscopy: basic concepts and instrumentation(Springer-Verlag, 2003).

F. K. Tittel, D. Richter, and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds, Topics Appl. Phys. 89, 445-516 (2003).

L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Differential absorption microscopy scheme where reference Gaussian (G) and vortex-shaped (V) pulses are focused by a lens (L) alternatively on the sample (SPL) and where the transmitted intensity is integrated by a detector (D). A scanner is used for producing images (xy). (b) Same as (a) but with confocal spatial filtering of the transmitted beam using a pinhole (PH). (c) Illustration of the transmission and change in population of a system of two-level oscillators for increasing incident intensity. (d) Difference Δ between vortex and reference PSF.

Fig. 2
Fig. 2

(a) Differential absorption PSF for vortex energies of 1 μJ (continuous), 100 nJ (shorter dash), 10 nJ (dash), and 1 nJ (dash-dot). The PSF were normalized with their maximum at 1 for clarity. (b) PSF FWHM for the data shown in (a). (c) PSF value at peak for the data shown in (a) without normalization.

Fig. 3
Fig. 3

(a) Differential absorption PSF with confocal spatial filtering for vortex energies of 100 nJ (shorter dash) and 10 nJ (dash) (pixel: 25 × 25 nm2). The PSF were normalized with their maximum at 1 for clarity. (b) Sample geometry for an array of nine cubic domains of alkane (300 × 300 × 300 nm3; 300 nm between domains), (c) corresponding Gaussian reference IR absorption image, (d) vortex IR absorption image, and (e) differential absorption image. (f) Line profiles extracted from the DIR and Gaussian reference images (dash). For (b-f) the pulse energy is 100 nJ and one pixel is 50 × 50 nm2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PS F vortex Σ 0,vortex (x,y) Σ vortex (x,y)
PS F Gauss Σ 0,Gauss (x,y) Σ Gauss (x,y)
Δ=PS F Gauss PS F vortex
PS F DIR Σ vortex (x,y) Σ Gauss (x,y)Δ(x,y)C
dI dz = hc λ k(r) ρ(r) ΔN(r,t) I(r,t)
dN dt =Γ(r) N(r)k(r) ΔN(r,t) I(r,t)
I vortex (r,t)= I 0,vortex r 2 e r 2 / w 0 2 e t 2 / τ 0 2
I Gauss (r,t)= I 0,Gauss e r 2 / w 0 2 e t 2 / τ 0 2
DIR(%)= Σ vortex Σ Gauss Σ 0,vortex ×100

Metrics