Abstract

The theoretical model for the metal-insulator-semiconductor nanowires is established and the optical properties are investigated. The linear absorption of the hybrid excitons, formed due to the exciton-plasmon interaction, shows obvious red shift on the magnitude of several meVs. The mechanism of the red shift is found to be the joint action of the increased excitonic binding energy attributed to the indirect Coulomb interaction and the decreased effective bandgap caused by the additional self-energy potential. The conclusion is also supported by the evolution of the absorption spectra with the adjustable structural parameters.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
    [CrossRef] [PubMed]
  2. S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter23, 425302 (2011).
    [CrossRef]
  3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007).
    [CrossRef]
  4. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006).
    [CrossRef] [PubMed]
  5. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B84, 081405 (2011).
    [CrossRef]
  6. H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000).
    [CrossRef]
  7. G. S. Agarwal and S. V. ONeil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B28, 487–493 (1983).
    [CrossRef]
  8. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999).
    [CrossRef]
  9. Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett.37, 2943–2945 (2012).
    [CrossRef] [PubMed]
  10. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
    [CrossRef] [PubMed]
  11. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
    [CrossRef]
  12. J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
    [CrossRef]
  13. J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
    [CrossRef]
  14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
    [CrossRef] [PubMed]
  15. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
    [CrossRef]
  16. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
    [CrossRef]
  17. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
    [CrossRef]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
    [CrossRef] [PubMed]
  19. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
    [CrossRef] [PubMed]
  20. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
    [CrossRef]
  21. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
    [CrossRef]
  22. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
    [CrossRef] [PubMed]
  23. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  24. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
    [CrossRef]
  25. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
    [CrossRef]
  26. M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011).
    [CrossRef]
  27. A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B82, 155322 (2010).
    [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82,195419 (2010).
    [CrossRef]
  29. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
    [CrossRef] [PubMed]
  30. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79, 233309 (2009).
    [CrossRef]
  31. M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32, 2125–2127 (2007).
    [CrossRef] [PubMed]
  32. M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008).
    [CrossRef]
  33. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7, 620–625 (2007).
    [CrossRef] [PubMed]
  34. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
    [CrossRef]
  35. D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
    [CrossRef]
  36. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
    [CrossRef]
  37. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
    [CrossRef] [PubMed]
  38. P. L. Hernández-Martínez and A. O. Govorov, “Exciton energy transfer between nanoparticles and nanowires,” Phys. Rev. B78, 035314 (2008).
    [CrossRef]
  39. I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation,” Opt. Express17, 17570–17581 (2009).
    [CrossRef] [PubMed]
  40. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
    [CrossRef] [PubMed]
  41. J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
    [CrossRef] [PubMed]
  42. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
    [CrossRef] [PubMed]
  43. Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
    [CrossRef] [PubMed]
  44. J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B86, 075438 (2012).
    [CrossRef]
  45. V. I. Sugakov and G. V. Vertsimakha, “Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle,” Phys. Rev. B81, 235308 (2010).
    [CrossRef]
  46. H.-C. Wang, X.-Y. Yu, Y.-L. Chueh, T. Malinauskas, K. Jarasiunas, and S.-W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express19, 18893–18902 (2011).
    [CrossRef] [PubMed]
  47. P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
    [CrossRef] [PubMed]
  48. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
    [CrossRef] [PubMed]
  49. E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
    [CrossRef]
  50. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys.80, 4403–4407 (1984).
    [CrossRef]
  51. S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996).
    [CrossRef]
  52. J.-Y. Yan, “Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field,” Phys. Rev. B78, 075204 (2008).
    [CrossRef]
  53. J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009).
    [CrossRef]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  55. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett.35, 4190–4192 (2010).
    [CrossRef] [PubMed]
  56. D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, “Optimal design of composite nanowires for extended reach of surface plasmon-polaritons,” Opt. Express19, 16058–16074 (2011).
    [CrossRef] [PubMed]

2012 (3)

Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett.37, 2943–2945 (2012).
[CrossRef] [PubMed]

D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
[CrossRef]

J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B86, 075438 (2012).
[CrossRef]

2011 (10)

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

H.-C. Wang, X.-Y. Yu, Y.-L. Chueh, T. Malinauskas, K. Jarasiunas, and S.-W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express19, 18893–18902 (2011).
[CrossRef] [PubMed]

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, “Optimal design of composite nanowires for extended reach of surface plasmon-polaritons,” Opt. Express19, 16058–16074 (2011).
[CrossRef] [PubMed]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011).
[CrossRef] [PubMed]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
[CrossRef]

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011).
[CrossRef]

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter23, 425302 (2011).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B84, 081405 (2011).
[CrossRef]

2010 (6)

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B82, 155322 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82,195419 (2010).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett.35, 4190–4192 (2010).
[CrossRef] [PubMed]

V. I. Sugakov and G. V. Vertsimakha, “Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle,” Phys. Rev. B81, 235308 (2010).
[CrossRef]

2009 (4)

J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79, 233309 (2009).
[CrossRef]

I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation,” Opt. Express17, 17570–17581 (2009).
[CrossRef] [PubMed]

2008 (6)

P. L. Hernández-Martínez and A. O. Govorov, “Exciton energy transfer between nanoparticles and nanowires,” Phys. Rev. B78, 035314 (2008).
[CrossRef]

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
[CrossRef]

J.-Y. Yan, “Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field,” Phys. Rev. B78, 075204 (2008).
[CrossRef]

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

2007 (10)

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
[CrossRef] [PubMed]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007).
[CrossRef]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7, 620–625 (2007).
[CrossRef] [PubMed]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32, 2125–2127 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

2006 (3)

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

2005 (2)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
[CrossRef]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

2002 (2)

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

2000 (2)

H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000).
[CrossRef]

E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
[CrossRef]

1999 (2)

V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

1996 (1)

S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996).
[CrossRef]

1984 (1)

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys.80, 4403–4407 (1984).
[CrossRef]

1983 (1)

G. S. Agarwal and S. V. ONeil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B28, 487–493 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and S. V. ONeil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B28, 487–493 (1983).
[CrossRef]

Aizpurua, J.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Artemyev, M.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

Artuso, R. D.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82,195419 (2010).
[CrossRef]

Atwater, A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Atwater, H. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
[CrossRef]

Baranov, A. V.

Bardhan, R.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Bechstedt, F.

S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996).
[CrossRef]

Berini, P.

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Biteen, J. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
[CrossRef]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Brus, L. E.

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys.80, 4403–4407 (1984).
[CrossRef]

Bryant, G. W.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82,195419 (2010).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

Carmeli, I.

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7, 620–625 (2007).
[CrossRef] [PubMed]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Chemla, D. S.

S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996).
[CrossRef]

Chen, B.

Cheng, M.-T.

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008).
[CrossRef]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32, 2125–2127 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Chueh, Y.-L.

Davis, T. J.

D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
[CrossRef]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

Di Stefano, O.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Dneprovskii, V. S.

E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
[CrossRef]

Duan, S.

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
[CrossRef]

Ducloy, M.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999).
[CrossRef]

Dung, H. T.

H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Everitt, H. O.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

Fan, Z.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Fedorov, A. V.

Fedutik, Y.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

Feng, S.-W.

Feng, X.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Fina, N.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Fofang, N. T.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

García de Abajo, F. J.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

Garcia-Etxarri, A.

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
[CrossRef]

Glutsch, S.

S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996).
[CrossRef]

Gómez, D. E.

D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
[CrossRef]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

Govorov, A. O.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B84, 081405 (2011).
[CrossRef]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B82, 155322 (2010).
[CrossRef]

P. L. Hernández-Martínez and A. O. Govorov, “Exciton energy transfer between nanoparticles and nanowires,” Phys. Rev. B78, 035314 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007).
[CrossRef]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7, 620–625 (2007).
[CrossRef] [PubMed]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

Grady, N. K.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Halas, N. J.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

Handapangoda, D.

Hao, F.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

Hao, Z.-H.

Hatef, A.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011).
[CrossRef]

He, Y.

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Hernandez, P.

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

Hernández-Martínez, P. L.

P. L. Hernández-Martínez and A. O. Govorov, “Exciton energy transfer between nanoparticles and nanowires,” Phys. Rev. B78, 035314 (2008).
[CrossRef]

Jagadish, C.

Jarasiunas, K.

Jia, J.-F.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Jiang, C.

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

Kihm, J. E.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Kim, D. S.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Klimov, V. V.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999).
[CrossRef]

Knight, M. W.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

Knoll, L.

H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000).
[CrossRef]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007).
[CrossRef]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Kunets, Vas.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Kuroda, T.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

Lee, C.-W.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007).
[CrossRef]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Letokhov, V. S.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999).
[CrossRef]

Lewis, N. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

Li, J.-J.

Lienau, C.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Liu, R. B.

J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009).
[CrossRef]

Liu, S.-D.

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008).
[CrossRef]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32, 2125–2127 (2007).
[CrossRef] [PubMed]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Malinauskas, T.

Manjavacas, A.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

Masumoto, Y.

E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
[CrossRef]

Mazur, Yu. I.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Mertens, H.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
[CrossRef]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Muljarov, E. A.

E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
[CrossRef]

Naik, R. R.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

Neogi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

Nordlander, P.

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

ONeil, S. V.

G. S. Agarwal and S. V. ONeil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B28, 487–493 (1983).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Polman, A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
[CrossRef]

Pomraenke, R.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Premaratne, M.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Ridolfo, A.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Roberts, A.

D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
[CrossRef]

Rukhlenko, I. D.

Runge, E.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Sadeghi, S. M.

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter23, 425302 (2011).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79, 233309 (2009).
[CrossRef]

Saija, R.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Savasta, S.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

Schindel, D. G.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011).
[CrossRef]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Shan, X.-Y.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

Singh, M. R.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011).
[CrossRef]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Slocik, J. M.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

Sugakov, V. I.

V. I. Sugakov and G. V. Vertsimakha, “Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle,” Phys. Rev. B81, 235308 (2010).
[CrossRef]

Sweatlock, L. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

Tackeuchi, A.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

Tam, F.

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
[CrossRef] [PubMed]

Temnov, V.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

Ustinovich, E.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

Vasa, P.

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Vernon, K. C.

D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
[CrossRef]

Vertsimakha, G. V.

V. I. Sugakov and G. V. Vertsimakha, “Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle,” Phys. Rev. B81, 235308 (2010).
[CrossRef]

Wang, C.-X.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Wang, H.-C.

Wang, Q.-Q.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008).
[CrossRef]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32, 2125–2127 (2007).
[CrossRef] [PubMed]

Welsch, D.-G.

H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000).
[CrossRef]

West, R. G.

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter23, 425302 (2011).
[CrossRef]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

Xue, Q.-K.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Yablonovitch, E.

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

Yan, J.-Y.

J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B86, 075438 (2012).
[CrossRef]

J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009).
[CrossRef]

J.-Y. Yan, “Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field,” Phys. Rev. B78, 075204 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
[CrossRef]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Yu, X.-Y.

Zhang, Q.

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B84, 081405 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Zhao, X. G.

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
[CrossRef]

Zhou, H.-J.

Zhu, B. F.

J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009).
[CrossRef]

Zhu, K.-D.

Zhukov, E. A.

E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
[CrossRef]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011).
[CrossRef]

M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008).
[CrossRef]

J. Chem. Phys. (1)

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys.80, 4403–4407 (1984).
[CrossRef]

J. Phys. Chem. C (1)

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007).
[CrossRef]

J. Phys.: Condens. Matter (1)

S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter23, 425302 (2011).
[CrossRef]

Nano Lett. (8)

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005).
[CrossRef]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7, 620–625 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007).
[CrossRef] [PubMed]

A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011).
[CrossRef] [PubMed]

J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007).
[CrossRef] [PubMed]

Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010).
[CrossRef]

Nature (London) (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007).
[CrossRef]

New J. Phys. (1)

J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (2)

H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000).
[CrossRef]

V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999).
[CrossRef]

Phys. Rev. B (18)

P. L. Hernández-Martínez and A. O. Govorov, “Exciton energy transfer between nanoparticles and nanowires,” Phys. Rev. B78, 035314 (2008).
[CrossRef]

D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012).
[CrossRef]

R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79, 233309 (2009).
[CrossRef]

A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B82, 155322 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82,195419 (2010).
[CrossRef]

G. S. Agarwal and S. V. ONeil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B28, 487–493 (1983).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B84, 081405 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999).
[CrossRef]

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996).
[CrossRef]

J.-Y. Yan, “Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field,” Phys. Rev. B78, 075204 (2008).
[CrossRef]

E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000).
[CrossRef]

J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B86, 075438 (2012).
[CrossRef]

V. I. Sugakov and G. V. Vertsimakha, “Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle,” Phys. Rev. B81, 235308 (2010).
[CrossRef]

Phys. Rev. Lett. (7)

P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007)
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002).
[CrossRef] [PubMed]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The structure of the metal-insulator-semiconductor nanowires, infinite in the z direction. The sizes of different materials in the ρ direction are labelled as Ri (i = 1, 2, 3). (b) The dielectric distribution of the composite nanowires in the ρ direction. (c) The illustration of the interaction between the excitons (the electron and hole pair in the SC) and the plasmons (oscillating field in the MNW).

Fig. 2
Fig. 2

The excitonic linear absorptions with four different Hamiltonians, whose detailed expressions are listed on it. Two diagrams of the structures corresponding to the unaffected exciton and the hybrid one are drawn on top of their spectra, respectively. Ω is the excitation energy and Eg is the bandgap. Other parameters are stated in the context.

Fig. 3
Fig. 3

(a) Schematics of the energy levels and confinement potentials of the unaffected excitons in the absence of the MNW (a) and the hybrid excitons in the composite MNW-IL-SC-IL nanowire (b). The real self-energy potentials U e , h S for the hybrid excitons are plotted in (b). The red arrows represent the excitations at the absorption peak for both cases. Parameters are same as that in Fig. 2.

Fig. 4
Fig. 4

The absorption spectra (solid lines) of the hybrid excitons with the width of the IL (R2R1) changing. The radius of the MNW (R1) is 10nm and the width of the SC (R3R2) is fixed to 5nm. The outer radius of the IL (R2) is set to 25nm, 18nm, 16nm, 14nm, and 12nm, respectively, from top to bottom. The change of these structures can be seen from their diagrams given aside. The absorption spectra of the unaffected excitons are also plotted with dashed lines for comparison in each case.

Fig. 5
Fig. 5

The absorption spectra of the hybrid excitons (solid lines) with the radius of the MNW changing. The radius of the MNW changes as 6nm, 10nm, 16nm, 25nm and 40nm from top to bottom. Both the width of the IL R2R1 and that of the SC R3R2 are set to 5nm. The absorption spectra of the unaffected excitons (dashed lines) in the same structures are also calculated for reference.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( ρ e , ρ h , z , t ) = ψ e ( ρ e , t ) ψ h ( ρ h , t ) ψ z ( z , t ) ,
V c 0 ( ρ e , ρ h , z ) = 1 4 π ε s e 2 ( ρ e ρ h ) 2 + z 2 ;
V c S ( ρ e , ρ h , z ) = e 2 4 π ε s 0 + 2 ( ε s ε m ) π C ( ρ e , ρ h ) cos k z d k ,
C ( ρ e , ρ h ) I 0 ( k R 1 ) I 0 ( k R 1 ) K 0 ( k ρ e ) K 0 ( k ρ h ) X 0 ( k R 1 ) .
i ( t + g 2 ) ψ ( ρ e , ρ h , z , t ) = H ψ ( ρ e , ρ h , z , t ) d c v E ( t ) δ ( r e r h ) ,
Ψ ( ρ e , ρ h , z , ) = 0 ,
H = H 0 + V c 0 ( ρ e , ρ h , z ) + V c S ( ρ e , ρ h , z ) + U e S ( ρ e ) + U h S ( ρ h ) ,
H 0 = h ¯ 2 2 m e ρ e 2 h ¯ 2 2 m h ρ h 2 h ¯ 2 2 μ z 2 ,
χ ( Ω ) [ P ( Ω ) / E 0 ] ,
P ( t ) = 1 V 0 + d c v * Ψ ( ρ , ρ , z = 0 , t ) 2 π ρ d ρ .
Δ Φ = q ε s δ ( r r ) ,
Φ i | R 1 = Φ o | R 1 ,
ε m Φ i ρ | ρ = R 1 = ε s Φ o ρ | ρ = R 1 ,
ϕ i ( o ) = 2 π n = + 0 + d k e in ( θ θ ) ( A i ( o ) I n ( k ρ ) + B i ( o ) K n ( k ρ ) ) cos k ( z z ) ,
ϕ c = q 4 π ε s 2 π n = + 0 + e in ( θ θ ) I n ( k ρ < ) K n ( k ρ > ) cos k ( z z ) d k ,
B o = q ( ε s ε m ) 4 π ε s I n ( k R 1 ) I n ( k R 1 ) K n ( k ρ ) X n ( k R 1 ) ,
X n ( x ) ε m I n ( x ) K n ( x ) ε s I n ( x ) K n ( x ) .
U q S ( ρ ) = lim r r 0 q ϕ i d q = q 2 ϕ i ( ρ , ρ , 0 , 0 ) .
U q S ( ρ ) = q 2 4 π ε s n = + 0 + ε s ε m π I n ( k R 1 ) I n ( k R 1 ) K n 2 ( k ρ ) X n ( k R 1 ) d k .

Metrics