Abstract

For high-density optical memory system, near-field recording on a medium with phase-change nanoparticles and dual metal layers was proposed. A finite difference time domain (FDTD) analysis demonstrated that a combination of a nanoantenna with such a medium so as to enhance plasmonic resonance would enable effective recording with larger (~10 times) working distance (WD) than for a conventional medium. A reproduction method of detecting the intensity of the reflected wave from the nanoantenna was also proposed in the same setup as the recording. We found that plasmonic resonance induced in the nanoantenna was enhanced and the intensity of reflected light was also increased when the phase state of nanoparticle was crystalline. Since the sub-diffraction limited size of nanoantenna is larger than a nanoparticle, the detected signal intensity can be greatly improved. Calculated results showed that our proposed system and methods for recording and reproduction would have a potential to become effective solutions for terabyte-class optical memory system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).
  2. T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
    [CrossRef]
  3. K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
    [CrossRef]
  4. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, “Writing 40 nm marks by using a beaked metallic plate near-field optical probe,” Opt. Lett.31(2), 259–261 (2006).
    [CrossRef] [PubMed]
  5. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
    [CrossRef]
  6. T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express20(17), 18946–18954 (2012).
    [CrossRef] [PubMed]
  7. T. Mihara, A. Tsuchino, S. Sato, K. Hisada, R. Kojima, N. Yamada, and S. Furumiya, “Crystallization properties of Ge-Sb and Ge-Bi-Te nanoparticles by pulsed laser irradiation,” Proceedings of the 24th Symposium on Phase Change Oriented Science (PCOS), A11, 53–56 (2012).

2012

2011

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

2010

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

2006

1987

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Akagi, F.

Akahira, N.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Anzai, Y.

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Birukawa, M.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Furumiya, S.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Habuta, H.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Hayashi, K.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Hisada, K.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Kojima, R.

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Kusada, H.

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

Li, J.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Matsumoto, T.

Mihara, T.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Miyamoto, H.

Mochizuki, M.

Nagata, K.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Nakamura, K.

Narumi, K.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Nishida, T.

Nishihara, T.

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

Nishiuchi, K.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Ohno, E.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Sano, K.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Shintani, T.

Shiono, T.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Stipe, B.

Stipe, B. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Takao, M.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Tanaka, Y.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Tomekawa, Y.

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

Tomita, H.

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Tsuchino, A.

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

Yamada, N.

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

Jpn. J. Appl. Phys.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, and M. Takao, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys.26, 61–66 (1987).

T. Nishihara, A. Tsuchino, Y. Tomekawa, H. Kusada, R. Kojima, and N. Yamada, “Rewritable triple-layer phase-change optical disk providing 100 gbyte capacity,” Jpn. J. Appl. Phys.50(6), 062503 (2011).
[CrossRef]

K. Narumi, K. Hisada, T. Mihara, H. Habuta, K. Hayashi, Y. Tanaka, K. Sano, H. Tomita, T. Shiono, S. Furumiya, R. Kojima, M. Birukawa, and N. Yamada, “One-head near-field writing/erasing on a rewritable dual-layer optical disk having high-index cover and separation layers,” Jpn. J. Appl. Phys.50(9), 09MG01 (2011).
[CrossRef]

Nat. Photonics

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

T. Mihara, A. Tsuchino, S. Sato, K. Hisada, R. Kojima, N. Yamada, and S. Furumiya, “Crystallization properties of Ge-Sb and Ge-Bi-Te nanoparticles by pulsed laser irradiation,” Proceedings of the 24th Symposium on Phase Change Oriented Science (PCOS), A11, 53–56 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Construction of a nanoantenna and a recording medium with phase-change nanoparticles and dual metal layers in the proposed high-density optical memory system: cross-sectional views on (a) XY plane at z = 0, (b) YZ plane at x = 0, and (c) medium with 5 x 5 squarely-arrayed nanoparticles on XZ plane.

Fig. 2
Fig. 2

Calculated distributions of (a) square of amplitude of electric field (E2), and (b) absorption per unit volume (nkωε0E2) on XY plane at z = 0 when Y-polarized plane wave with a wavelength of λ = 780 nm and E2 = 1 V2/m2 illuminated, where n is the refractive index, k is the extinction coefficient, ω is the angular frequency, and ε0 is dielectric constant in vacuum.

Fig. 3
Fig. 3

Construction of a nanoantenna and a conventional recording medium with phase-change thin film: cross-sectional view on XY plane at z = 0, which is a model in order to verify the validity of the combination of the nanoantenna and the nanoparticle in the proposed system as shown in Fig. 1.

Fig. 4
Fig. 4

Calculated distributions of (a) square of amplitude of electric field (E2), (b) absorption per unit volume (nkωε0E2) shown with a maximum value of 420 nW/m3, and (c) absorption per unit volume with a maximum value of 50 nW/m3 (remained red for the area of nkωε0E2 > 50 nW/m3) on XY plane at z = 0 when Y-polarized plane wave with a wavelength of λ = 780 nm and E2 = 1 V2/m2 illuminated.

Fig. 5
Fig. 5

Absorption per unit length of the central nanoparticle calculated as a function of (a) the length of L of the nanoantenna, (b) the apex angle of θ of the nanoantenna, (c) the thickness of t3 of the space layer, and (d) WD, on which the dependence of the cross-write by absorption was also exhibited, where the filled circles represent the calculated values.

Fig. 6
Fig. 6

Calculated distributions of square of amplitude of electric field (E2): (a) total field E2 on the YZ plane at x = 0, and (b) scattered field E2 of the reflected wave on the XY detector plane when Y-polarized plane wave with a wavelength of λ = 780 nm and E2 = 1 V2/m2 illuminated. The reflected wave within a detector area was detected by a lens with NA = 0.71 to a photo detector.

Fig. 7
Fig. 7

Calculated distributions of square of amplitude of electric field (E2) on the detector plane for four kinds of media with fundamental arrangement of phase-states of nanoparticles: (a) cross-sectional view and (b) plane views.

Fig. 8
Fig. 8

Reflectance differences of ΔR1 and ΔR2 calculated as a function of (a) the length of L of the nanoantenna, (b) the apex angle of θ of the nanoantenna, (c) the thickness of t3 of space layer, and (d) WD, when NA = 0.71 both for focus and detection.

Fig. 9
Fig. 9

Calculated distributions of absorption per unit volume (nkωε0E2) on XZ plane at the middle of nanoparticles for 12-nm diameter nanoparticles medium of (a) 5 x 5 square array with a period of p = 24 nm (recording density of 1.12 Tb/inch2), and (b) 7 x 7 hexagonal close-packed array with a period of p = 16 nm (recording density of 2.91 Tb/inch2), when Y-polarized plane wave with a wavelength of λ = 780 nm and E2 = 1 V2/m2 illuminated. The WD was 12 nm and the thickness of protection layer was t6 = 2 nm.

Fig. 10
Fig. 10

(a) Absorption per unit length of the central nanoparticle and cross-write by absorption calculated as a function of recording density and recording capacity (ϕ 12cm), and (b) the reflectance differences of ΔR1 and ΔR2 as a function of recording density and recording capacity (ϕ 12cm).

Metrics