Abstract

We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 1014 cm−3. The fiber guided fluorescence emission presents strong Ar+ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997).
    [CrossRef]
  2. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  3. F. Benabid, “Hollow-core photonic bandgap fibres: new guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A364, 3439–3462 (2006).
  4. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
    [CrossRef]
  5. H. Bergmann, U. Stamm, D. Basting, and G. Marowsky, “Principles of Excimer Lasers,” in Excimer Laser Technology (Springer Berlin Heidelberg, 2005).
  6. J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
    [CrossRef] [PubMed]
  7. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).
  8. F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
    [CrossRef]
  9. X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
    [CrossRef]
  10. L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
    [CrossRef]
  11. Y. P. Raizer, “Gas Discharge Physics,” (Springer, New York, 1991).
  12. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  13. M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975).
    [CrossRef]
  14. M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
    [CrossRef]
  15. M. A. Lieberman, “Dynamics of a collisional, capacitive RF sheath,” IEEE Trans. Plasma Sci.17(2), 338–341 (1989).
    [CrossRef]
  16. H. Schluter and A. Shivarova, “Travelling-wave-sustained discharges,” Phys. Rep.443(4-6), 121–255 (2007).
    [CrossRef]
  17. Z. Zakrzewski, “Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,” J. Phys. D Appl. Phys.16(2), 171–180 (1983).
    [CrossRef]
  18. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  19. C. M. Ferreira, “Modelling of a low-pressure plasma column sustained by a surface wave,” J. Phys. D Appl. Phys.16(9), 1673–1685 (1983).
    [CrossRef]
  20. L. L. Alves, “Fluid modelling of the positive column of direct-current glow discharges,” Plasma Sources Sci. Technol.16(3), 557–569 (2007).
    [CrossRef]
  21. M. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” (John Wiley, New Jersey, 2005).
  22. H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
    [CrossRef]
  23. C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
    [CrossRef]
  24. Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990).
    [CrossRef]
  25. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
    [CrossRef]
  26. L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009).
    [CrossRef] [PubMed]
  27. J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
    [CrossRef]

2012

L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
[CrossRef]

J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
[CrossRef]

2011

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

2009

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).

L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009).
[CrossRef] [PubMed]

2008

X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
[CrossRef]

2007

H. Schluter and A. Shivarova, “Travelling-wave-sustained discharges,” Phys. Rep.443(4-6), 121–255 (2007).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

L. L. Alves, “Fluid modelling of the positive column of direct-current glow discharges,” Plasma Sources Sci. Technol.16(3), 557–569 (2007).
[CrossRef]

2006

F. Benabid, “Hollow-core photonic bandgap fibres: new guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A364, 3439–3462 (2006).

2003

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

1997

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997).
[CrossRef]

1996

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

1994

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

1990

Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990).
[CrossRef]

1989

M. A. Lieberman, “Dynamics of a collisional, capacitive RF sheath,” IEEE Trans. Plasma Sci.17(2), 338–341 (1989).
[CrossRef]

1987

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

1983

C. M. Ferreira, “Modelling of a low-pressure plasma column sustained by a surface wave,” J. Phys. D Appl. Phys.16(9), 1673–1685 (1983).
[CrossRef]

Z. Zakrzewski, “Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,” J. Phys. D Appl. Phys.16(2), 171–180 (1983).
[CrossRef]

1982

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

1975

M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975).
[CrossRef]

Alves, L. L.

J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
[CrossRef]

L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009).
[CrossRef] [PubMed]

L. L. Alves, “Fluid modelling of the positive column of direct-current glow discharges,” Plasma Sources Sci. Technol.16(3), 557–569 (2007).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Beaudry, C.

M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975).
[CrossRef]

Behnke, J. F.

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Benabid, F.

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, “Hollow-core photonic bandgap fibres: new guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A364, 3439–3462 (2006).

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Bloyet, E.

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

Boisse-Laporte, C.

J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
[CrossRef]

L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009).
[CrossRef] [PubMed]

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

Brandenburg, R.

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Chilla, J. L. A.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Cortázar, O. D.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Couny, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Demokan, M. S.

X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997).
[CrossRef]

Ferreira, C. M.

C. M. Ferreira, “Modelling of a low-pressure plasma column sustained by a surface wave,” J. Phys. D Appl. Phys.16(9), 1673–1685 (1983).
[CrossRef]

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Granier, A.

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

Gregório, J.

J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Hajlaoui, Y.

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Hartshorn, D.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Henry, D.

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Hubert, J.

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Ji, L.

L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
[CrossRef]

Jin, W.

X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997).
[CrossRef]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Kozlov, K. V.

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Kruger, C. H.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Laux, C. O.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Leprince, P.

J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
[CrossRef]

Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990).
[CrossRef]

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975).
[CrossRef]

Letout, S.

L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009).
[CrossRef] [PubMed]

Lieberman, M. A.

M. A. Lieberman, “Dynamics of a collisional, capacitive RF sheath,” IEEE Trans. Plasma Sci.17(2), 338–341 (1989).
[CrossRef]

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Liu, D.

L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
[CrossRef]

Marec, J.

Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990).
[CrossRef]

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

Michel, P.

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Moisan, M.

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975).
[CrossRef]

Niu, J.

L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
[CrossRef]

Pantel, R.

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Rakem, Z.

Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990).
[CrossRef]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Ricard, A.

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Roberts, J. P.

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

Roberts, P. J.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Rocca, J. J.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Schluter, H.

H. Schluter and A. Shivarova, “Travelling-wave-sustained discharges,” Phys. Rep.443(4-6), 121–255 (2007).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Shi, X.

X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
[CrossRef]

Shivarova, A.

H. Schluter and A. Shivarova, “Travelling-wave-sustained discharges,” Phys. Rep.443(4-6), 121–255 (2007).
[CrossRef]

Shlyaptsev, V.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Song, Y.

L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
[CrossRef]

Sonnenfeld, A.

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Spence, T. G.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Tomasel, F. G.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997).
[CrossRef]

Wagner, H. E.

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Wang, X. B.

X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
[CrossRef]

Zakrzewski, Z.

Z. Zakrzewski, “Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,” J. Phys. D Appl. Phys.16(2), 171–180 (1983).
[CrossRef]

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Zare, R. N.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

IEEE J. Quantum Electron.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996).
[CrossRef]

IEEE Photonics Technol. Lett.

X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Characteristics of Gas Breakdown in Hollow-Core Fibers,” IEEE Photonics Technol. Lett.20(8), 650–652 (2008).
[CrossRef]

IEEE Trans. Plasma Sci.

M. Moisan, C. Beaudry, and P. Leprince, “A Small Microwave Plasma Source for Long Column Production without Magnetic Field,” IEEE Trans. Plasma Sci.3(2), 55–59 (1975).
[CrossRef]

M. A. Lieberman, “Dynamics of a collisional, capacitive RF sheath,” IEEE Trans. Plasma Sci.17(2), 338–341 (1989).
[CrossRef]

J. Appl. Phys.

L. Ji, D. Liu, Y. Song, and J. Niu, “Atmospheric pressure dielectric barrier microplasmas inside hollow-core optical fibers,” J. Appl. Phys.111(7), 073304 (2012).
[CrossRef]

C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince, and J. Marec, “Influence of the excitation frequency on surface wave argon discharges: Study of the light emission,” J. Appl. Phys.61(5), 1740–1746 (1987).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Publ.4, 09004 (2009).

J. Mod. Opt.

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

J. Phys. D Appl. Phys.

Z. Zakrzewski, “Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,” J. Phys. D Appl. Phys.16(2), 171–180 (1983).
[CrossRef]

C. M. Ferreira, “Modelling of a low-pressure plasma column sustained by a surface wave,” J. Phys. D Appl. Phys.16(9), 1673–1685 (1983).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A

F. Benabid, “Hollow-core photonic bandgap fibres: new guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A364, 3439–3462 (2006).

Phys. Rep.

H. Schluter and A. Shivarova, “Travelling-wave-sustained discharges,” Phys. Rep.443(4-6), 121–255 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

L. L. Alves, S. Letout, and C. Boisse-Laporte, “Modeling of surface-wave discharges with cylindrical symmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.79(1), 016403 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser,” Phys. Rev. Lett.73(16), 2192–2195 (1994).
[CrossRef] [PubMed]

Plasma Sources Sci. Technol.

J. Gregório, P. Leprince, C. Boisse-Laporte, and L. L. Alves, “Self-consistent modelling of atmospheric micro-plasmas produced by a microwave source,” Plasma Sources Sci. Technol.21(1), 015013 (2012).
[CrossRef]

L. L. Alves, “Fluid modelling of the positive column of direct-current glow discharges,” Plasma Sources Sci. Technol.16(3), 557–569 (2007).
[CrossRef]

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, “Optical diagnostics of atmospheric pressure air plasmas,” Plasma Sources Sci. Technol.12(2), 125–138 (2003).
[CrossRef]

Rev. Phys. Appl. (Paris)

Z. Rakem, P. Leprince, and J. Marec, “Characteristics of a surface-wave produced discharge operating under standing wave conditions,” Rev. Phys. Appl. (Paris)25(1), 125–130 (1990).
[CrossRef]

M. Moisan, C. M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, “Properties and applications of surface-wave produced plasmas,” Rev. Phys. Appl. (Paris)17(11), 707–727 (1982).
[CrossRef]

Science

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Solid State Commun.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Solid State Commun.102(2-3), 165–173 (1997).
[CrossRef]

Vacuum

H. E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, and J. F. Behnke, “The barrier discharge: basic properties and applications to surface treatment,” Vacuum71(3), 417–436 (2003).
[CrossRef]

Other

M. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” (John Wiley, New Jersey, 2005).

H. Bergmann, U. Stamm, D. Basting, and G. Marowsky, “Principles of Excimer Lasers,” in Excimer Laser Technology (Springer Berlin Heidelberg, 2005).

Y. P. Raizer, “Gas Discharge Physics,” (Springer, New York, 1991).

Supplementary Material (1)

» Media 1: MPG (7031 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematics of the overall set-up and of the generation of the microwave surface-wave at the interface of HC-PCF core and its cladding. (b) Surfatron: principle of operation and schematic of the field lines. (c) Zoom inside optical waveguide core depicting the transverse profile of the plasma constituents and the forces involved in the creation of the space-charge sheath and the plasma neutral region.

Fig. 2
Fig. 2

(a) SEM image of the cross-section of the fiber (b) Measured transmission spectrum through a 50 cm-long piece of HC-PCF under test.

Fig. 3
Fig. 3

(a) Overall distribution of the calculated E-field. (b) (1) Close-up on the SW field magnitude; (2) transverse and (3) longitudinal field components. See (Media 1) for an animated version of the SW field. (c) Transverse profile of the field magnitude at a peak position (z = 3.15 mm from the gap) (1) and minimum field position (z = 7.32 mm) (2). (d) Evolution along the propagation axis z of the SW attenuation coefficient α and propagation constant β (rhs), and of the electron density ne (lhs). The horizontal dotted line indicates the critical electron density nc below which the plasma extinguishes.

Fig. 4
Fig. 4

(a) Picture of a section of the plasma column. (b) Optical emission spectrum of the plasma recorded longitudinally at one end of the HC-PCF (40 cm away from the surfatron). Insets: Scanning Electron Micrograph of the fiber after use and output profile of the transmitted emission at 750 nm.

Fig. 5
Fig. 5

Calculated transverse profiles of (a) the plasma potential (black) and the electron mean energy (red), and (b) the normalized densities for the electrons (black) and the ions (red), for average electron density of 1.3x1014 cm−3 and r0 = 50 μm. The insets show the evolution with the radius of (a) the maximum plasma potential and (b) the space-charge sheath thickness, defined from a reference position that corresponds to 1% of relative charge separation. (c) Gas temperature transverse profiles for different radii and average electron densities. (d) Gas power-density associated with ion acceleration (dashed lines) and electron-neutral elastic collisions (solid lines), obtained at 1.3x1014 cm−3 average electron density for radii of 1000 μm (black) and 50 μm (red). The dotted vertical red line in (b) and (d) shows the axial position of the sheath beginning for 50 μm core-size case. All simulations were performed at 1 mbar pressure, 2.45 GHz frequency and 500 K wall gas temperature.

Metrics