Abstract

Straight and s-curve Yb(7%):YAG waveguides have been fabricated with the femtosecond laser writing technique. By employing a novel writing scheme an increase of the refractive index change could be achieved in comparison to waveguides written with the standard procedure. Straight waveguides, fabricated with this scheme, enabled highly efficient Ti:sapphire laser pumped waveguide lasers with slope efficiencies of 79% and output powers of more than 1 W. With slope efficiencies from 50% to 60% for the curved waveguide lasers with radii of curvature of R ≥ 20 mm the possibility of fs-laser written complex optical devices is demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. R. G. Gatass and E. Mazur, “Femtosecond micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
    [CrossRef]
  3. E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012).
    [CrossRef]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005).
    [CrossRef] [PubMed]
  5. G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
    [CrossRef]
  6. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100, 131–135 (2010).
    [CrossRef]
  7. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18, 16035–16041 (2010).
    [CrossRef] [PubMed]
  8. Y. Tan, A. Ródenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4channel waveguide laser,” Opt. Express18, 24994–24999 (2010).
    [CrossRef] [PubMed]
  9. T. Calmano, J. Siebenmorgen, A.-G. Paschke, C. Fiebig, K. Paschke, G. Erbert, K. Petermann, and G. Huber, “Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser [Invited],” Opt. Mater. Express1, 428–433 (2011).
    [CrossRef]
  10. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
    [CrossRef]
  11. W.-J. Chen, S. M. Eaton, H Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16, 11470–11480 (2008).
    [CrossRef] [PubMed]
  12. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
    [CrossRef]
  13. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30, 1060–1062 (2005).
    [CrossRef] [PubMed]
  14. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33, 956–958 (2008).
    [CrossRef] [PubMed]
  15. L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
    [CrossRef]
  16. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
    [CrossRef]
  17. M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Elect.11, 75–83 (1975).
    [CrossRef]
  18. R. W. Smink, B. P. de Hon, and A. G. Tijhuis, “Bending loss in optical fibers–a full-wave approach,” J. Opt. Soc. Am. B24, 2610–2618 (2007).
    [CrossRef]
  19. B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan, “Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling,” Appl. Opt.47, 2961–2970 (2008).
    [CrossRef] [PubMed]
  20. O. Svelto, Principles of Lasers (Plenum Press, New York, 1998), Chap. 7.
    [CrossRef]
  21. L. McCaughan and E. J. Murphy, “Influence of Temperature and Initial Titanium Dimensions on Fiber-Ti:LiNbO3Waveguide Insertion Loss at λ= 1.3 μm,” IEEE J. Quantum Electron.19, 131–136 (1983).
    [CrossRef]

2012 (1)

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012).
[CrossRef]

2011 (3)

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

T. Calmano, J. Siebenmorgen, A.-G. Paschke, C. Fiebig, K. Paschke, G. Erbert, K. Petermann, and G. Huber, “Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser [Invited],” Opt. Mater. Express1, 428–433 (2011).
[CrossRef]

2010 (3)

2009 (1)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

2008 (5)

2007 (1)

2005 (2)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

1996 (1)

1983 (1)

L. McCaughan and E. J. Murphy, “Influence of Temperature and Initial Titanium Dimensions on Fiber-Ti:LiNbO3Waveguide Insertion Loss at λ= 1.3 μm,” IEEE J. Quantum Electron.19, 131–136 (1983).
[CrossRef]

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Elect.11, 75–83 (1975).
[CrossRef]

Ams, M.

Benayas, A.

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Calmano, T.

Cantelar, E.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

Chen, F.

Chen, W.-J.

Cheng, Y.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

Davis, K. M.

de Hon, B. P.

Dekker, P.

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Eaton, S. M.

Erbert, G.

Fiebig, C.

Fujimoto, J. G.

Gatass, R. G.

R. G. Gatass and E. Mazur, “Femtosecond micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Grattan, K. T. V.

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Elect.11, 75–83 (1975).
[CrossRef]

He, F.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Elect.11, 75–83 (1975).
[CrossRef]

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

Herman, P. R.

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Hirao, K.

Huber, G.

Ippen, E. P.

Jaque, D.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012).
[CrossRef]

Y. Tan, A. Ródenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4channel waveguide laser,” Opt. Express18, 24994–24999 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

Kar, A. K.

Khrushchev, I.

Kowalevicz, A. M.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

Leung, D. M. H.

Lifante, G.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

Lu, Q.

Marshall, G. D.

Mazur, E.

R. G. Gatass and E. Mazur, “Femtosecond micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

McCaughan, L.

L. McCaughan and E. J. Murphy, “Influence of Temperature and Initial Titanium Dimensions on Fiber-Ti:LiNbO3Waveguide Insertion Loss at λ= 1.3 μm,” IEEE J. Quantum Electron.19, 131–136 (1983).
[CrossRef]

Midorikawa, K.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

Minoshima, K.

Mitchell, J.

Miura, K.

Murphy, E. J.

L. McCaughan and E. J. Murphy, “Influence of Temperature and Initial Titanium Dimensions on Fiber-Ti:LiNbO3Waveguide Insertion Loss at λ= 1.3 μm,” IEEE J. Quantum Electron.19, 131–136 (1983).
[CrossRef]

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Obayya, S. S. A.

Okhrimchuk, A. G.

Paschke, A.-G.

Paschke, K.

Petermann, K.

Piper, J. A.

Qiao, L.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Rahman, B. M. A.

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Ródenas, A.

Y. Tan, A. Ródenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4channel waveguide laser,” Opt. Express18, 24994–24999 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

Ruske, J.-P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Sharma, V.

Shestakov, A. V.

Siebenmorgen, J.

Smink, R. W.

Sugimoto, N.

Sugioka, K.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

Svelto, O.

O. Svelto, Principles of Lasers (Plenum Press, New York, 1998), Chap. 7.
[CrossRef]

Tan, Y.

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Thomson, R. R.

Tijhuis, A. G.

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Wang, C.

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Withford, M. J.

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Zhang, H

Appl. Opt. (1)

Appl. Phys. A (2)

L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Appl. Phys. B (2)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008).
[CrossRef]

IEEE J. Quantum Elect. (1)

M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Elect.11, 75–83 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. McCaughan and E. J. Murphy, “Influence of Temperature and Initial Titanium Dimensions on Fiber-Ti:LiNbO3Waveguide Insertion Loss at λ= 1.3 μm,” IEEE J. Quantum Electron.19, 131–136 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. G. Gatass and E. Mazur, “Femtosecond micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012).
[CrossRef]

Opt. Mater. Express (1)

Phys. Stat. Sol. A (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011).
[CrossRef]

Other (1)

O. Svelto, Principles of Lasers (Plenum Press, New York, 1998), Chap. 7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different writing schemes for the fabrication of waveguides (a). Definition of parameters for s-curve (b) and circularly curved (c) waveguides. The light incoupling direction is indicated by the red arrow.

Fig. 2
Fig. 2

Polarization contrast images of the cross section of pairs of tracks in a 60 μm thin YAG disk prepared from waveguides written with scheme B (a) and scheme A (b) in the xy-plane. Bright field microscope image of an s-curve structure at the transition between the straight and the curved part (c). Polarization contrast image of an s-curve structure at the transition between the straight and the curved part (d) in the xz-plane.

Fig. 3
Fig. 3

Mode profiles at 1064 nm of straight waveguides (d = 25 μm) written with scheme A (a) and scheme B (b). Mode profiles at 633 nm of circularly curved waveguides (d = 25 μm) with different arc lenghts and radii of curvature (c) and (d). Mode profiles of straight (R = ∞, d = 25 μm, scheme B) and s-curve waveguides (d = 26 μm) at 633 nm for different R (e) – (i). The cross sections of the tracks written with scheme A are indicated with white ellipses. The cross sections of the tracks written with scheme B are marked with white rectangles.

Fig. 4
Fig. 4

Damping of s-curve waveguides in dependency of the radius of curvature for waveguides with different track distances and oscillation amplitudes for the zigzag oscillation. The red dotted line indicates the losses of straight waveguides (R = ∞, d = 27 μm, scheme B).

Fig. 5
Fig. 5

Input output characteristics of straight (R = ∞) and s-curve waveguide lasers with different radii of curvature (a). Laser threshold plotted against radius of curvature (b).

Tables (1)

Tables Icon

Table 1 Set of suitable writing parameters for zigzag movement.

Metrics