Abstract

In this paper, a novel terahertz (THz) plasmonic switch is designed and simulated. The device consists of a periodically corrugated n-type doped silicon wafer covered with a metallic layer. Surface plasmon propagation along the structure is controlled by applying a control voltage onto the metal. As will be presented, the applied voltage can effectively alter the width of the depletion layer appeared between the deposited metal and the semiconductor. In this manner, the conductivity of the silicon substrate can be successfully controlled due to the absence of free electrons at the depleted sections. Afterwards, the effectiveness of the proposed plasmonic switch is enhanced by implementing a p++-type doped well beneath the metallic indentation edges. Consequently, a P-Intrinsic-N diode is formed which can manipulate the plasmon propagation by modifying the electron and hole densities inside the intrinsic area. The simulation results are explained very concisely by the help of scattering matrix formalism. Such a representation is essential as employing the switches in the design of complex plasmonic systems with many interacting parts.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Armstrong, “The truth about terahertz,” IEEE Spectr.49(9), 36–41 (2012).
    [CrossRef]
  2. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
    [CrossRef] [PubMed]
  3. W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
    [CrossRef] [PubMed]
  4. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
    [CrossRef]
  5. G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
    [CrossRef]
  6. M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012).
    [CrossRef]
  7. M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
    [CrossRef]
  8. M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).
  9. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  10. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007), pp. 93–100.
  11. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
    [CrossRef] [PubMed]
  12. B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008).
    [CrossRef]
  13. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
    [CrossRef] [PubMed]
  14. G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
    [CrossRef]
  15. V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
    [CrossRef]
  16. J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
    [CrossRef]
  17. J. A. Sanchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B73(20), 205410 (2006).
    [CrossRef]
  18. E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
    [CrossRef]
  19. K. Song and P. Mazmuder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. on Elect. Devices56(11), 2792–2799 (2009).
    [CrossRef]
  20. Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011).
    [CrossRef]
  21. A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett.84(8), 1416–1418 (2004).
  22. K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
    [CrossRef]
  23. Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
    [CrossRef]
  24. Ansoft HFSS, Ansys Inc., Pittsburg, PA.
  25. C. A. Balanis, Advanced Engineering Electromagnetics, 1rd edition (John Wiley & Sons, 1989).
  26. Atlas User’s Manual, Silvaco, Santa Clara, CA, Jul. 2010.
  27. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990).
    [CrossRef]
  28. T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78(6), 1106–1109 (1997).
    [CrossRef]
  29. C. C. Hu, Modern Semiconductor Devices for Integrated Circuits (Prentice Hall, 2010).
  30. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
    [CrossRef]
  31. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21(13), 15490–15504 (2013).
    [CrossRef] [PubMed]
  32. P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013).
    [CrossRef]
  33. D. M. Pozar, Microwave Engineering, 3rd edition (John Wiley & Sons, 2005).

2013

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013).
[CrossRef]

J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21(13), 15490–15504 (2013).
[CrossRef] [PubMed]

2012

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
[CrossRef]

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

C. M. Armstrong, “The truth about terahertz,” IEEE Spectr.49(9), 36–41 (2012).
[CrossRef]

2011

Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011).
[CrossRef]

2010

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

2009

K. Song and P. Mazmuder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. on Elect. Devices56(11), 2792–2799 (2009).
[CrossRef]

K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

2008

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008).
[CrossRef]

L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
[CrossRef] [PubMed]

2007

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

2006

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

J. A. Sanchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B73(20), 205410 (2006).
[CrossRef]

2004

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett.84(8), 1416–1418 (2004).

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

1997

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78(6), 1106–1109 (1997).
[CrossRef]

1990

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990).
[CrossRef]

Aizin, G. R.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Allen, S. J.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Alu, A.

P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013).
[CrossRef]

Andress, W. F.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Argyropoulos, C.

P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013).
[CrossRef]

Armstrong, C. M.

C. M. Armstrong, “The truth about terahertz,” IEEE Spectr.49(9), 36–41 (2012).
[CrossRef]

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

Bolivar, P. H.

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

Bonn, M.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Chen, P.

P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013).
[CrossRef]

Chen, X.

Cross, A. W.

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

Davies, A. G.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Dhar, S.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Dyer, G. C.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

El-Ghazaly, S.

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
[CrossRef]

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012).
[CrossRef]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Fan, S.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Gomez Rivas, J.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

Gómez-Díaz, J. S.

Gossard, A. C.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Grine, A. D.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Grischkowsky, D.

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78(6), 1106–1109 (1997).
[CrossRef]

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990).
[CrossRef]

Ham, D.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Hashemi, M. R.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

He, S.

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008).
[CrossRef]

Hendry, E.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

Hensley, J. M.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Jarrahi, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

Jeon, T.

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78(6), 1106–1109 (1997).
[CrossRef]

Jokerst, N. M.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Kanp, W. M.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Khanna, S. P.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Khorrami, M. A.

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
[CrossRef]

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012).
[CrossRef]

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Konoplev, V.

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett.84(8), 1416–1418 (2004).

Kuipers, L.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

Kurz, H.

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

Kuttge, M.

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

Lee, J. S.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Li, L.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Liang, G.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Liang, H.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Lim, D. F.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Linfield, E.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Liu, H. C.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Liu, L.

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008).
[CrossRef]

Lockyear, M. J.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

MacDoland, K. F.

K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mazmuder, P.

K. Song and P. Mazmuder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. on Elect. Devices56(11), 2792–2799 (2009).
[CrossRef]

Mazumder, P.

Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011).
[CrossRef]

Mikalopas, J.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Naseem, H.

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
[CrossRef]

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012).
[CrossRef]

Nguyen, V.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Otsuji, T.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Perruisseau-Carrier, J.

Pfeiffer, L.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Pheps, A. D. R.

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

Phipps, A. R.

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

Popov, V. V.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Preu, S.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Qin, L.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Reno, J. L.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Rivas, J. G.

J. A. Sanchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B73(20), 205410 (2006).
[CrossRef]

Robertson, C. W.

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

Ronald, K.

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

Ryzhii, M.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Ryzhii, V.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Samson, Z. L.

K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Sanchez-Gil, J. A.

J. A. Sanchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B73(20), 205410 (2006).
[CrossRef]

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

Satou, A.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Schmalenberg, P.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Shaner, E. A.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Shen, L.

Sherwin, M. S.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Smith, D. R.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Song, K.

Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011).
[CrossRef]

K. Song and P. Mazmuder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. on Elect. Devices56(11), 2792–2799 (2009).
[CrossRef]

Stockman, M. I.

K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Tan, C. S.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Tombet, S. A. B.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

Tyler, T.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

Urzhumov, Y.

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

van Exter, M.

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990).
[CrossRef]

Veronis, G.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Vinh, N. Q.

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

Wang, B.

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008).
[CrossRef]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

Wang, Q. J.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Watanabe, T.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

West, K.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Xu, Z.

Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011).
[CrossRef]

Yang, T. J.

Yeung, K. Y. M.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Yoon, H.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Yu, S. F.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Yu, S. Q.

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
[CrossRef]

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012).
[CrossRef]

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).

Zhang, Y.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

Zheludev, N.

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett.84(8), 1416–1418 (2004).

Zheludev, N. I.

K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Appl. Phys. Lett.

G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013).
[CrossRef]

V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013).
[CrossRef]

A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett.84(8), 1416–1418 (2004).

M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990).
[CrossRef]

G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

IEEE Spectr.

C. M. Armstrong, “The truth about terahertz,” IEEE Spectr.49(9), 36–41 (2012).
[CrossRef]

IEEE Trans. Antenn. Propag.

P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013).
[CrossRef]

IEEE Trans. Electron. Dev.

Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011).
[CrossRef]

IEEE Trans. on Elect. Devices

K. Song and P. Mazmuder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. on Elect. Devices56(11), 2792–2799 (2009).
[CrossRef]

IEEE Trans. Terahertz Sci. & Technol.

T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013).
[CrossRef]

J. Appl. Phys.

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012).
[CrossRef]

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008).
[CrossRef]

Nano Lett.

W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012).
[CrossRef] [PubMed]

Nat Commun

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013).
[CrossRef] [PubMed]

Nat. Mater.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010).
[CrossRef] [PubMed]

Nat. Photonics

K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009).
[CrossRef]

Opt. Express

Phys. Rev. B

Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012).
[CrossRef]

J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006).
[CrossRef]

J. A. Sanchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B73(20), 205410 (2006).
[CrossRef]

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007).
[CrossRef]

Phys. Rev. Lett.

T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78(6), 1106–1109 (1997).
[CrossRef]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007), pp. 93–100.

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).

M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012).
[CrossRef]

D. M. Pozar, Microwave Engineering, 3rd edition (John Wiley & Sons, 2005).

C. C. Hu, Modern Semiconductor Devices for Integrated Circuits (Prentice Hall, 2010).

Ansoft HFSS, Ansys Inc., Pittsburg, PA.

C. A. Balanis, Advanced Engineering Electromagnetics, 1rd edition (John Wiley & Sons, 1989).

Atlas User’s Manual, Silvaco, Santa Clara, CA, Jul. 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

A front view of the proposed plasmonic THz switch and input and output plasmonic waveguides. The switch and the waveguides are respectively designed inside the doped and un-doped sections of a silicon wafer with thickness t1 = 160 µm indented with periodic holes with repetition d = 30 µm, in distances a = 24 µm and height h = 60 µm.

Fig. 2
Fig. 2

(a) 2-port demonstration of the plasmonic device terminated with plasmonic waveguides. (b) A schematic showing the details of the initial simulation performed for the calibration.

Fig. 3
Fig. 3

The TM fundamental mode phase constants calculated by the analytical model (Eq. (1) and Rq. 2) versus frequency as the indentation height h is changing.

Fig. 4
Fig. 4

Variations of the waveguide’s fundamental mode wave impedances Zxr and phase constant, calculated by the full wave solver versus frequency.

Fig. 5
Fig. 5

(a) and (b) show the distribution of the electron density inside the doped silicon wafer, and the magnitude of the electric field at f = 300 GHz as Va = 1 V, respectively. (c), (d) similarly present the variations of the charge density and the electric field magnitude at the same frequency as the applied voltage is −80 V.

Fig. 6
Fig. 6

S21 of the plasmonic switch versus frequency as the device is operating in different modes at THz frequency range.

Fig. 7
Fig. 7

S11 of the plasmonic switch versus frequency as the device is operating in different modes at THz frequency range.

Fig. 8
Fig. 8

S21 of the plasmonic switch with the Schottky contact as its length is l d1 =20×d .

Fig. 9
Fig. 9

A front view of the optimized plasmonic THz switch consists an un-doped silicon wafer indented with periodic holes (d = 30 μm, a = 24 μm, h = 60 μm and t1 = 160 μm) and highly p and n type doped at specific locations.

Fig. 10
Fig. 10

The hole and electron density distributions, and the magnitude of the electric field at f = 300 GHz as: (a), (b), (c) Va = 5 V and (d), (e), (f) Va = 0 V, respectively.

Fig. 11
Fig. 11

Insertion losses of the optimized plasmonic switch versus frequency under different bias conditions

Fig. 12
Fig. 12

Return losses of the optimized plasmonic switch (with the PIN diode) versus frequency as the device is operating in THz frequency range.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S 0 = a d sinc( β×a 2 ),
R= n×p n 2 i τ p ( n+ n i )+ τ n ( p+ n i ) .
ε M =1 ω p 2 ω 2 jωγ
σ si = σ dc 1+ ( ωτ ) 2 ,ε( ω )= ε r τ σ dc 1+ ( ωτ ) 2 ,
μ n = 0.1318 ( 1+ N D + N A 10 17 ) 0.85 +0.0092
μ p = 0.042 ( 1+ N D + N A 1.6× 10 17 ) 0.7 +0.005,
( E r 1 y E r 2 y )=( S 11 S 12 S 21 S 22 )( E i 1 y E i 2 y ).
S 11 = E r 1 y E i 1 y | E i 2 y =0 , S 21 = E r 2 y E i 1 y | E i 2 y =0 .

Metrics