Abstract

A simple absorber design which enables near-perfect absorption in the visible and near-infrared regions is presented. The absorber is an unpatterned metal/dielectric/metal triple-layer, e.g., a 20 nm-thick metal film as the top layer, a 250 nm-thick dielectric film as the middle layer, and a 200 nm-thick metal film as the bottom layer. It was found that the high-efficiency absorption at specific wavelengths is mainly due to the Fabry-Perot (FP) resonances in the dielectric middle layer which result in trapping of the resonant light in the middle layer and thus enhanced absorption efficiency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef]
  2. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
    [CrossRef]
  3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
    [CrossRef]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef]
  5. B. X. Zhang, Y. H. Zhao, Q. Z. Hao, B. Kiraly, I. C. Khoo, S. F. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express19(16), 15221–15228 (2011).
    [CrossRef]
  6. C. G. Hu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009).
    [CrossRef]
  7. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
    [CrossRef]
  8. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
    [CrossRef]
  9. S. Shu and Y. Y. Li, “Metallic rugate structures for near-perfect absorbers in visible and near-infrared regions,” Opt. Lett.37(17), 3495–3497 (2012).
    [CrossRef]
  10. B. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, 2000).
  11. W. W. Salisbury, US Patent No. 2599944 (1952).
  12. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  13. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical-Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and Far Infrared,” Appl. Opt.22(7), 1099–1119 (1983).
    [CrossRef]
  14. H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B50(7), 4795–4801 (1994).
    [CrossRef]
  15. C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
    [CrossRef]
  16. C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
    [CrossRef]
  17. J. Zhou, L. Jin, and E. Y.-B. Pun, “Tunable multichannel nonreciprocal perfect absorber based on resonant absorption,” Opt. Lett.37(13), 2613–2615 (2012).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

2012 (5)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

S. Shu and Y. Y. Li, “Metallic rugate structures for near-perfect absorbers in visible and near-infrared regions,” Opt. Lett.37(17), 3495–3497 (2012).
[CrossRef]

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

J. Zhou, L. Jin, and E. Y.-B. Pun, “Tunable multichannel nonreciprocal perfect absorber based on resonant absorption,” Opt. Lett.37(13), 2613–2615 (2012).
[CrossRef]

2011 (1)

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

2009 (2)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

C. G. Hu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009).
[CrossRef]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

1994 (1)

H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B50(7), 4795–4801 (1994).
[CrossRef]

1983 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Alexander, R. W.

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Chan, C. T.

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

Chen, S. F.

Chen, X. N.

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Hao, Q. Z.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

Hu, C. G.

Huang, C. P.

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

Huang, T. J.

Jin, L.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Khoo, I. C.

Kiraly, B.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

Li, Y. Y.

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Liu, H.

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Lochbihler, H.

H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B50(7), 4795–4801 (1994).
[CrossRef]

Long, L. L.

Luo, X. G.

Mainguy, S. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Ordal, M. A.

Padilla, W. J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

Pun, E. Y.-B.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Qiu, M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Shu, S.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Wang, J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Wang, S. B.

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

Ward, C. A.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Yin, X. G.

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

Zhang, B. X.

Zhang, Y.

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

Zhao, Y. H.

Zhao, Z. Y.

Zhou, J.

Zhou, L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Zhu, Y. Y.

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef]

Nature (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (5)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B50(7), 4795–4801 (1994).
[CrossRef]

C. P. Huang, S. B. Wang, X. G. Yin, Y. Zhang, H. Liu, Y. Y. Zhu, and C. T. Chan, “Enhanced electromagnetic pressure in a sandwiched reflection grating,” Phys. Rev. B86(8), 085446 (2012).
[CrossRef]

C. P. Huang, X. G. Yin, Y. Zhang, S. B. Wang, Y. Y. Zhu, H. Liu, and C. T. Chan, “Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating,” Phys. Rev. B85(23), 235410 (2012).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef]

Other (3)

B. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley & Sons, 2000).

W. W. Salisbury, US Patent No. 2599944 (1952).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Proposed absorber design with an Ag/dielectric/Ag structure in visible and near-IR region. The incident angle is labeled as θ.

Fig. 2
Fig. 2

Calculated spectra for an Ag/dielectric/Ag structure of reflection (a) and |Ffp|, the modulus of Ffp, (b) amplitude of R12 (c) and φ12 + k2d2 (d) of the designed absorber.

Fig. 3
Fig. 3

The absorption spectra for an Ag/dielectric/Ag absorber calculated by the mathematical method (MM) presented in Section 3 (top), the TMM (middle), and the FDTD method (bottom).

Fig. 4
Fig. 4

Absorption spectra for the absorbers based on different metals: Au, Ag, Cu, Al and Ni.

Fig. 5
Fig. 5

Electric field distribution over the cross-section of the absorber at 1142 nm for an Ag/dielectric/Ag structure.

Fig. 6
Fig. 6

Absorption spectra for an Ag/dielectric/Ag structure calculated using the FDTD method: (a) only middle and bottom layers, (b) only top and middle layers, (c) three layers.

Fig. 7
Fig. 7

Absorption spectra for an Ag/dielectric/Ag structure calculated by the TMM with the thickness of the top layer, d1, changing from 10 to 30nm.

Fig. 8
Fig. 8

Absorption spectra for an Ag/dielectric/Ag structure calculated by the TMM with the thickness of the middle layer, d2, changing from 150 to 350 nm.

Fig. 9
Fig. 9

Absorption spectra calculated by the FDTD method of an Ag/Si/Ag absorber with either the wavelength-dispersion of complex refractive index (“complex n”) of Si considered, or with εr2 set to 11.7 (“εr2=11.7”) for the entire wavelength range.

Fig. 10
Fig. 10

Absorption spectra for TE and TM polarizations at different incident angles for an Ag/dielectric/Ag structure. The insets show angular dependence of absorption at λ = 1142 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E i y = A i e i ( k x x + k i z z ) + B i e i ( k x x k i z z ) H i x = k i z μ 0 μ r i ω ( A i e i ( k x x + k i z z ) B i e i ( k x x k i z z ) )
E t = Z n × H t
A 2 B 2 = u 1 u + 1 e 2 i k 2 z ( d 1 + d 2 )
u = μ r 3 ε r 2 μ r 2 sin 2 θ μ r 2 ε r 3
u = ε r 2 ε r 3
r = | R | 2 = | R 12 ( 1 e 2 i k 2 z d 2 ) e 2 i k 1 z d 1 + R 01 ( 1 R 12 2 e 2 i k 2 z d 2 ) ( 1 R 12 2 e 2 i k 2 z d 2 ) + R 01 R 12 ( 1 e 2 i k 2 z d 2 ) e 2 i k 1 z d 1 | 2 = | 1 R 01 + R 01 1 R 01 R 01 Φ + 1 | 2
1 Φ = R 12 ( 1 e 2 i k 2 z d 2 ) e 2 i k 1 z d 1 ( 1 R 12 2 e 2 i k 2 z d 2 )
F f p = 1 ( 1 + R 12 R 23 e 2 i k 2 d 2 ) = 1 ( 1 R 12 2 e 2 i k 2 d 2 )
φ 12 + k 2 d 2 = m π

Metrics