Abstract

Projectors require a zoom function. This function is generally realized using a zoom lens module composed of many lenses and mechanical parts; however, using a zoom lens module increases the system size and cost, and requires manual operation of the module. Holographic projection is an attractive technique because it inherently requires no lenses, reconstructs images with high contrast and reconstructs color images with one spatial light modulator. In this paper, we demonstrate a lensless zoomable holographic projection. Without using a zoom lens module, this holographic projection realizes the zoom function using a numerical method, called scaled Fresnel diffraction which can calculate diffraction at different sampling rates on a projected image and hologram.

© 2013 OSA

Full Article  |  PDF Article

Errata

Tomoyoshi Shimobaba, Michal Makowski, Takashi Kakue, Minoru Oikawa, Naohisa Okada, Yutaka Endo, Ryuji Hirayama, and Tomoyoshi Ito, "Lensless zoomable holographic projection using scaled Fresnel diffraction: erratum," Opt. Express 21, 28232-28232 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-23-28232

References

  • View by:
  • |
  • |
  • |

  1. W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference, 31–32 (2008).
  2. M. Freeman, M. Champion, and S. Madhavan, “Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device),”Optics & Photonics News20(5), 28–34 (2009).
    [CrossRef]
  3. E. Buckley, “Holographic Laser Projection,” J. Display Technol.99, 1–6 (2010).
  4. E. Buckley, “Holographic projector using one lens,” Opt. Lett.35, 3399–3401 (2010).
    [CrossRef] [PubMed]
  5. H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express20, 27222–27229 (2012).
    [CrossRef] [PubMed]
  6. Y.-H. Lin and M.-S. Chen, “A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses,” J. Disp. Tech.8, 401–404 (2012).
    [CrossRef]
  7. T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” IDW’11, PRJ3(2011).
  8. T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
    [CrossRef]
  9. T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).
  10. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express15, 5631–5640 (2007).
    [CrossRef] [PubMed]
  11. T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
    [CrossRef]
  12. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express17, 20840–20846 (2009).
    [CrossRef] [PubMed]
  13. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett.35, 1227–1229 (2010).
    [CrossRef] [PubMed]
  14. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett.36, 3018–3020 (2011).
    [CrossRef] [PubMed]
  15. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyki, “Simple holographic projection in color,” Opt. Express20, 25130–25136 (2012).
    [CrossRef] [PubMed]
  16. M. Makowski, I. Ducin, K. Kakarenko, M. Sypek, and A. Kolodziejczyk, “Speckle Suppression in Color Holographic Projection by Pixel Separation,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DTu1A.6.
    [CrossRef]
  17. T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
    [CrossRef]

2013

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

2012

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
[CrossRef]

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express20, 27222–27229 (2012).
[CrossRef] [PubMed]

Y.-H. Lin and M.-S. Chen, “A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses,” J. Disp. Tech.8, 401–404 (2012).
[CrossRef]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyki, “Simple holographic projection in color,” Opt. Express20, 25130–25136 (2012).
[CrossRef] [PubMed]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

2011

2010

2009

M. Freeman, M. Champion, and S. Madhavan, “Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device),”Optics & Photonics News20(5), 28–34 (2009).
[CrossRef]

M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express17, 20840–20846 (2009).
[CrossRef] [PubMed]

2007

Buckley, E.

E. Buckley, “Holographic Laser Projection,” J. Display Technol.99, 1–6 (2010).

E. Buckley, “Holographic projector using one lens,” Opt. Lett.35, 3399–3401 (2010).
[CrossRef] [PubMed]

Champion, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device),”Optics & Photonics News20(5), 28–34 (2009).
[CrossRef]

Chen, M.-S.

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express20, 27222–27229 (2012).
[CrossRef] [PubMed]

Y.-H. Lin and M.-S. Chen, “A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses,” J. Disp. Tech.8, 401–404 (2012).
[CrossRef]

Collings, N.

Davis, W. O.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference, 31–32 (2008).

Ducin, I.

Fajst, A.

Freeman, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device),”Optics & Photonics News20(5), 28–34 (2009).
[CrossRef]

Gotchev, A.

T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” IDW’11, PRJ3(2011).

Ito, T.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
[CrossRef]

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” IDW’11, PRJ3(2011).

Kakarenko, K.

Kakue, T.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
[CrossRef]

Kolodziejczyk, A.

Kolodziejczyki, A.

Lin, H.-C.

Lin, Y.-H.

H.-C. Lin, N. Collings, M.-S. Chen, and Y.-H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express20, 27222–27229 (2012).
[CrossRef] [PubMed]

Y.-H. Lin and M.-S. Chen, “A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses,” J. Disp. Tech.8, 401–404 (2012).
[CrossRef]

Madhavan, S.

M. Freeman, M. Champion, and S. Madhavan, “Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device),”Optics & Photonics News20(5), 28–34 (2009).
[CrossRef]

Makowski, M.

Masuda, N.

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
[CrossRef]

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” IDW’11, PRJ3(2011).

Miller, J.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference, 31–32 (2008).

Muffoletto, R. P.

Nishitsuji, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

Oikawa, M.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

Okada, N.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

Sakurai, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

Shimobaba, T.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
[CrossRef]

T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” IDW’11, PRJ3(2011).

Shiraki, A.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

Siemion, A.

Sprague, R.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference, 31–32 (2008).

Suszek, J.

Sypek, M.

Takada, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

Tohline, J. E.

Tyler, J. M.

Weng, J.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

Wojnowski, D.

Yamaguchi, Y.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

Comput. Phys. Commun.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun.183, 1124–1138 (2012).
[CrossRef]

J. Disp. Tech.

Y.-H. Lin and M.-S. Chen, “A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses,” J. Disp. Tech.8, 401–404 (2012).
[CrossRef]

J. Display Technol.

E. Buckley, “Holographic Laser Projection,” J. Display Technol.99, 1–6 (2010).

J. Opt.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt.15, 075302(5pp) (2013).
[CrossRef]

JSID

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Numerical investigation of zoomable holographic projection without a zoom lens,” JSID20, 533–538 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Optics & Photonics News

M. Freeman, M. Champion, and S. Madhavan, “Scanned Laser Pico-Projectors: Seeing the Big Picture (with a Small Device),”Optics & Photonics News20(5), 28–34 (2009).
[CrossRef]

Other

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” Optical MEMs and Nanophotonics, 2008 IEEE/LEOS International Conference, 31–32 (2008).

T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Zoomable Color Holographic Projection Method Without a Zoom Lens,” IDW/AD’ 12, PRJp-5 (2012).

T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” IDW’11, PRJ3(2011).

M. Makowski, I. Ducin, K. Kakarenko, M. Sypek, and A. Kolodziejczyk, “Speckle Suppression in Color Holographic Projection by Pixel Separation,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DTu1A.6.
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (317 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup for our lensless zoomable holographic projection.

Fig. 2
Fig. 2

Optimizing holograms. (a) Gerchberg-Saxton (GS) algorithm with scaled diffraction calculation (b) multiple random phase method.

Fig. 3
Fig. 3

Numerical reconstruction of projected images calculated by GS algorithm alone and multiple random phase method. (a) GS algorithm with five iterations. (b) GS algorithm with 100 iterations (c) multiple random phase method with five iterations and N = 20.

Fig. 4
Fig. 4

Numerical reconstruction of projected images calculated by two scaled diffraction calculations: Shifted-Fresnel diffraction and ARSS-Fresnel diffraction.

Fig. 5
Fig. 5

Optical reconstruction of projected images calculated by the multiple random phase method and ARSS-Fresnel diffraction ( Media 1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u 2 ( x 2 ) = exp ( i k z ) i λ z u 1 ( x 1 ) exp ( i π λ z ( x 2 x 1 ) 2 ) d x 1 ,
u 2 ( x 2 ) = C z 1 [ [ u 1 ( x 1 ) exp ( i ϕ u ) ] [ exp ( i ϕ h ) Rect ( x h 2 x max ) ] ] ,

Metrics