Abstract

With the intra-cavity nano-scale charcoal powder based saturable absorber, the 455-fs passive mode-locking of an L-band erbium-doped fiber laser (EDFL) is demonstrated. The size reduction of charcoal nano-particle is implemented with a simple imprinting–exfoliation–wiping method, which assists to increase the transmittance up to 0.91 with corresponding modulation depth of 26%. By detuning the power gain from 17 to 21 dB and cavity dispersion from −0.004 to −0.156 ps2 of the EDFL, the shortening of mode-locked pulsewidth from picosecond to sub-picosecond by the transformation of the pulse forming mechanism from self-amplitude modulation (SAM) to the combining effect of self-phase modulation (SPM) and group delay dispersion (GDD) is observed. A narrower spectrum with 3-dB linewidth of 1.83-nm is in the SAM case, whereas the spectral linewidth broadens to 5.86 nm with significant Kelly sideband pair can be observed if the EDFL enters into the SPM regime. The mode-locking mechanism transferred from SAM to SPM/GDD dominates the pulse shortening procedure in the EDFL, whereas the intrinsic defects in charcoal nano-particle only affect the pulse formation at initial stage. The minor role of the saturable absorber played in the EDFL cavity with strongest SPM is observed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  2. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
    [CrossRef] [PubMed]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  4. H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
    [CrossRef]
  5. Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
    [CrossRef]
  6. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
    [CrossRef]
  7. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
    [CrossRef]
  8. H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
    [CrossRef]
  9. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
    [CrossRef]
  10. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010).
    [CrossRef] [PubMed]
  11. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
    [CrossRef]
  12. B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011).
    [CrossRef]
  13. G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
    [CrossRef]
  14. Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
    [CrossRef]
  15. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
    [CrossRef] [PubMed]
  16. J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012).
    [CrossRef] [PubMed]
  17. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
    [CrossRef]
  18. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
    [CrossRef]
  19. H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
    [CrossRef]
  20. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
    [CrossRef] [PubMed]
  21. Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
    [CrossRef]
  22. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
    [CrossRef]
  23. H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
    [CrossRef]
  24. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
    [CrossRef] [PubMed]
  25. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012).
    [CrossRef] [PubMed]
  26. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20(21), 23653–23658 (2012).
    [CrossRef] [PubMed]
  27. Z. B. Liu, X. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36(16), 3024–3026 (2011).
    [CrossRef] [PubMed]
  28. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
    [CrossRef]
  29. Y. H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
    [CrossRef]
  30. Y. H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
    [CrossRef]
  31. V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
    [CrossRef]
  32. Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
    [CrossRef]
  33. K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
    [CrossRef] [PubMed]
  34. K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
    [CrossRef]
  35. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
    [CrossRef] [PubMed]
  36. X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
    [CrossRef] [PubMed]
  37. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
    [CrossRef] [PubMed]
  38. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
    [CrossRef] [PubMed]
  39. V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
    [CrossRef]
  40. Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
    [CrossRef]
  41. E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B58(3), 159–170 (1994).
    [CrossRef]
  42. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
    [CrossRef]
  43. J.-C. Chiu, C.-M. Chang, B.-Z. Hsieh, S.-C. Lin, C.-Y. Yeh, G.-R. Lin, C.-K. Lee, J.-J. Lin, and W.-H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011).
    [CrossRef] [PubMed]
  44. Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006).
    [CrossRef] [PubMed]
  45. G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007).
    [CrossRef]
  46. G.-R. Lin, J. Y. Chang, Y. S. Liao, and H. H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability,” Opt. Express14(21), 9743–9749 (2006).
    [CrossRef] [PubMed]
  47. G. P. Agrawal, Nonlinear Fiber Optics (London, UK: Academic Press, 1995).
  48. G.-R. Lin, I.-H. Chiu, and M. C. Wu, “1.2 ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60 ps backward dark-optical comb injection and soliton compression,” Opt. Express13(3), 1008–1014 (2005).
    [CrossRef] [PubMed]
  49. G.-R. Lin, J. J. Kang, and C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection,” Opt. Express18(9), 9570–9579 (2010).
    [CrossRef] [PubMed]
  50. F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998).
    [CrossRef]
  51. F. X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu , (2006).

2013 (3)

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Y. H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

2012 (10)

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20(21), 23653–23658 (2012).
[CrossRef] [PubMed]

Y. H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

2011 (6)

J.-C. Chiu, C.-M. Chang, B.-Z. Hsieh, S.-C. Lin, C.-Y. Yeh, G.-R. Lin, C.-K. Lee, J.-J. Lin, and W.-H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011).
[CrossRef]

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Z. B. Liu, X. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36(16), 3024–3026 (2011).
[CrossRef] [PubMed]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

2010 (13)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

G.-R. Lin, J. J. Kang, and C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection,” Opt. Express18(9), 9570–9579 (2010).
[CrossRef] [PubMed]

2009 (5)

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
[CrossRef] [PubMed]

2008 (2)

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (3)

2005 (1)

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

1998 (2)

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998).
[CrossRef]

K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
[CrossRef]

1994 (1)

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B58(3), 159–170 (1994).
[CrossRef]

Abramski, K. M.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012).
[CrossRef] [PubMed]

Agarwal, G. S.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Bao, Q. L.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Bao, Z.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Batra, A.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Becerril, H. A.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Boguslawski, J.

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Boopathi, M.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Brown, C. L.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011).
[CrossRef]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Chang, C.-M.

Chang, J. Y.

Chang, Y. M.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Chen, P.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Chen, Y.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Cheng, W. H.

Cheng, W.-H.

Chi, Y. C.

Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

Chiu, I.-H.

Chiu, J.-C.

Cho, J.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Cunning, B. V.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011).
[CrossRef]

der Au, J. A.

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998).
[CrossRef]

Dong, X.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Feng, Y. P.

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Ferrari, A. C.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Fuse, K.

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Gupta, G.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Gutch, P. K.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Hasan, T.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Hata, T.

K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
[CrossRef]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

He, X.

Holdynski, M.

Hsieh, B.-Z.

Huang, P. L.

Huang, S. H.

Huang, W.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Imamura, Y.

K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
[CrossRef]

Ippen, E. P.

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B58(3), 159–170 (1994).
[CrossRef]

Ishihara, S.

K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
[CrossRef]

Jagiello, J.

Jang, S. Y.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Jose, R.

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

Kaczmarek, P.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Kang, J. J.

Kelleher, E. J. R.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Keller, U.

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998).
[CrossRef]

Kielpinski, D.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011).
[CrossRef]

Kim, H.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Kozinski, R.

Krzempek, K.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Kuo, H. H.

Kurtner, F. X.

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, C. K.

Lee, C.-K.

Lee, J. H.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Li, H.

Li, L. J.

Li, L.-J.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Li, Z. Q.

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
[CrossRef]

Liao, Y. S.

Lim, C. T.

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

Lin, B.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

Lin, G.-R.

Y. H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

Y. H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

J.-C. Chiu, C.-M. Chang, B.-Z. Hsieh, S.-C. Lin, C.-Y. Yeh, G.-R. Lin, C.-K. Lee, J.-J. Lin, and W.-H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011).
[CrossRef] [PubMed]

G.-R. Lin, J. J. Kang, and C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection,” Opt. Express18(9), 9570–9579 (2010).
[CrossRef] [PubMed]

K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
[CrossRef] [PubMed]

G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol.25(11), 3597–3601 (2007).
[CrossRef]

Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett.31(10), 1382–1384 (2006).
[CrossRef] [PubMed]

G.-R. Lin, J. Y. Chang, Y. S. Liao, and H. H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability,” Opt. Express14(21), 9743–9749 (2006).
[CrossRef] [PubMed]

G.-R. Lin, I.-H. Chiu, and M. C. Wu, “1.2 ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60 ps backward dark-optical comb injection and soliton compression,” Opt. Express13(3), 1008–1014 (2005).
[CrossRef] [PubMed]

Lin, J.-J.

Lin, K. H.

Lin, S. C.

Lin, S.-C.

Lin, Y. H.

Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

Y. H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

Y. H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

Lin, Y.-C.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

Lin, Y.-T.

Ling, Q.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Lipinska, L.

Liu, J.

Liu, Z.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Liu, Z. B.

Loh, K. P.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Lu, C. J.

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
[CrossRef]

Lu, H. H.

Lu, Y. H.

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Luo, Z.

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
[CrossRef]

Mao, J.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Martinez, A.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Ni, Z.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Ni, Z. H.

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Nicolosi, V.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Nigam, A. K.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Nishimiya, K.

K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
[CrossRef]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Paletko, P.

Pan, C.-L.

Pasternak, I.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Polavarapu, L.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Popa, D.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

Ramakrishna, S.

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Samuel, M.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Shen, Z.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Singh, B.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Singh, V. V.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Sobon, G.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012).
[CrossRef] [PubMed]

J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

Song, Y. W.

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Song, Y.-W.

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Sotor, J.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012).
[CrossRef] [PubMed]

Srivastava, A.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Stoltenberg, R. M.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Strupinski, W.

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Su, C. Y.

Su, C.-Y.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Sun, R.

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Tan, F.

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Tang, D. Y.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Tjin, S. C.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

Torrisi, F.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Travers, J. C.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Tripathi, B. K.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Vijayaraghavan, R.

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Wang, D. N.

Wang, F.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Wang, P.

Wang, S.

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

Wang, Y.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wang, Y. Y.

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Wu, H. H.

Wu, M. C.

Wu, S.

Xia, Z. P.

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
[CrossRef]

Xu, B.

Xu, J.

Xu, Q. H.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Yamashita, S.

Yan, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, J.

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

Yang, Q. H.

Yang, Q.-H.

Yeh, C. Y.

Yeh, C.-Y.

Yu, T.

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Zdrojek, M.

Zhang, H.

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Zhang, W.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Zhao, J.

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Zhao, L.

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

Zhou, Y.

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
[CrossRef]

ACS Nano (3)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010).
[CrossRef] [PubMed]

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008).
[CrossRef] [PubMed]

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano2(11), 2301–2305 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater. (4)

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, “Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application,” Adv. Funct. Mater.22(11), 2352–2362 (2012).
[CrossRef]

Q. L. Bao, H. Zhang, J. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene–polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20(5), 782–791 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Appl. Phys. B (1)

E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B58(3), 159–170 (1994).
[CrossRef]

Appl. Phys. Lett. (7)

H. Zhang, Q. L. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009).
[CrossRef]

Y. M. Chang, H. Kim, J. H. Lee, and Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011).
[CrossRef]

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

H. Kim, J. Cho, S. Y. Jang, and Y. W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Carbon (1)

Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, “X-ray diffraction patterns of graphite and turbostratic carbon,” Carbon45(8), 1686–1695 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron.4(2), 159–168 (1998).
[CrossRef]

J. Lightwave Technol. (2)

J. Wood Sci. (1)

K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, “Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy,” J. Wood Sci.44(1), 56–61 (1998).
[CrossRef]

Laser Phys. Lett. (7)

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett.9(8), 581–586 (2012).
[CrossRef]

Y. H. Lin, Y. C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett.10(5), 055105 (2013).
[CrossRef]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett.8(12), 880–886 (2011).
[CrossRef]

Y. H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett.9(5), 398–404 (2012).
[CrossRef]

Y. H. Lin and G.-R. Lin, “Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nano-particles,” Laser Phys. Lett.10(4), 045109 (2013).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010).
[CrossRef]

G. Sobon, J. Sotor, I. Pasternak, W. Strupinski, K. Krzempek, P. Kaczmarek, and K. M. Abramski, “Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber,” Laser Phys. Lett.10(3), 035104 (2013).
[CrossRef]

Nano Res. (2)

Q. L. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res.4(3), 297–307 (2011).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010).
[CrossRef]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Opt. Commun. (1)

H. Zhang, D. Y. Tang, L. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun.283(17), 3334–3338 (2010).
[CrossRef]

Opt. Express (11)

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
[CrossRef] [PubMed]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010).
[CrossRef] [PubMed]

P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012).
[CrossRef] [PubMed]

K. H. Lin, J. J. Kang, H. H. Wu, C. K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express17(6), 4806–4814 (2009).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20(17), 19463–19473 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20(21), 23653–23658 (2012).
[CrossRef] [PubMed]

G.-R. Lin, J. Y. Chang, Y. S. Liao, and H. H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability,” Opt. Express14(21), 9743–9749 (2006).
[CrossRef] [PubMed]

J.-C. Chiu, C.-M. Chang, B.-Z. Hsieh, S.-C. Lin, C.-Y. Yeh, G.-R. Lin, C.-K. Lee, J.-J. Lin, and W.-H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express19(5), 4036–4041 (2011).
[CrossRef] [PubMed]

G.-R. Lin, I.-H. Chiu, and M. C. Wu, “1.2 ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60 ps backward dark-optical comb injection and soliton compression,” Opt. Express13(3), 1008–1014 (2005).
[CrossRef] [PubMed]

G.-R. Lin, J. J. Kang, and C. K. Lee, “High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection,” Opt. Express18(9), 9570–9579 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

X. Dong, C.-Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.-J. Li, “Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties,” Phys. Chem. Chem. Phys.12(9), 2164–2169 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene Layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (London, UK: Academic Press, 1995).

F. X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu , (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The imprinting-exfoliation-wiping procedure for adhesion of charcoal nano-particles onto SMF patchcord connector end-face. (a) The photographs of pencil, charcoal powder and SMF. (b) The OM image of charcoal nano-particle directly brushed on SMF end-face. (c) The connected SMF patchcord. (d) Separation of SMF connectors. (e) The OM images of the split charcoal nano-particles distributed on both SMA connector end-faces.

Fig. 2
Fig. 2

The schematic diagram of the passively mode-locked EDFL system. LD: laser diode, WDM: wavelength-division multiplexer, PC: polarization controller.

Fig. 3
Fig. 3

The SEM image of charcoal nano-particles.

Fig. 4
Fig. 4

The (a) full-band and (b) C1s XPS spectra of charcoal nano-particle.

Fig. 5
Fig. 5

The (a) Raman spectrum and (b) XRD spectrum of charcoal nano-particle [32].

Fig. 6
Fig. 6

The (a) Saturable transmittance and (b) saturable absorbance of charcoal nano-particle [32].

Fig. 7
Fig. 7

(a) The Pout vs. Pin curves in logarithm scale of the high-gain and low-gain EDFAs. (b) The Gain vs. Pin curves in linear scale of the high-gain and low-gain EDFAs.

Fig. 8
Fig. 8

The (a) auto-correlated pulses and (b) optical spectra of the high-gain(upper) and low-gain (lower) EDFLs mode-locked by charcoal nano-particles (solid: measured; dashed: fitting) [32].

Fig. 9
Fig. 9

(a) The improved passively mode-locked EDFL pulse train. (b) The original passively mode-locked EDFL pulse train [32].

Fig. 10
Fig. 10

The (a) simulated autocorrelation traces and (b) optical spectra of the passively mode-locked EDFLs without (upper) and with (lower) the GDD and SPM effects.

Tables (1)

Tables Icon

Table 1 Parametric comparisons of the high-gain and low-gain EDFL mode-locked bt charcoal nano-particles.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α= q lin + q non 1+ P in / P sat q in + q non q non P sat P in q lin + q non + 3ωIm( χ (3) ) 2 ε 0 c 2 n 0 2 P in ,
T R A(T,t) T =[ g l 0 + D g,f 2 t 2 +γ | A 0 | 2 ]A(T,t)+j[ D 2 t 2 δ | A 0 | 2 ]A(T,t),
τ= 2 D g, f γ | A 0 | 2 .
τ'= τ 2 (2 β 2 3β D N )= τ 2 [ 2β(β3 D N ) ],
β= 3 2 ( 1+ δ N D N δ N + D N )± [ 3 2 ( 1+ δ N D N δ N + D N ) ] 2 +2 ,

Metrics