Abstract

We report the experimental demonstration of a fully fiber-integrated picosecond optical parametric oscillator. The gain is provided by a 50-meters homemade photonic crystal fiber in the ring cavity. A time-dispersion-tuned technique is used to allow the oscillator to select the oscillating wavelength adaptively and synchronize with the pump pulse train. The output wavelength of the oscillator can be continuously tuned from 988 to 1046 nm and from 1085 to 1151 nm by adjusting the pump wavelength and the time-dispersion-tuned technique simultaneously.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett.27(16), 1439–1441 (2002).
    [CrossRef] [PubMed]
  2. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286(5444), 1513–1517 (1999).
    [CrossRef] [PubMed]
  3. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28(22), 2225–2227 (2003).
    [CrossRef] [PubMed]
  4. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
    [CrossRef]
  5. J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
    [CrossRef]
  6. A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47(12), 1514–1518 (2011).
    [CrossRef]
  7. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion,” Opt. Express21(13), 15826–15833 (2013).
    [CrossRef] [PubMed]
  8. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15(6), 2947–2952 (2007).
    [CrossRef] [PubMed]
  9. Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett.34(7), 989–991 (2009).
    [CrossRef] [PubMed]
  10. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express15(4), 1474–1479 (2007).
    [CrossRef] [PubMed]
  11. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator,” J. Opt. Soc. Am. B26(7), 1351–1356 (2009).
    [CrossRef]
  12. R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett.30(7), 340–342 (1977).
    [CrossRef]
  13. Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett.21(17), 1223–1225 (2009).
    [CrossRef]
  14. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett.30(10), 1234–1236 (2005).
    [CrossRef] [PubMed]
  15. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  16. J. E. Sharping, C. Pailo, C. Gu, L. Kiani, and J. R. Sanborn, “Microstructure fiber optical parametric oscillator with femtosecond output in the 1200 to 1350 nm wavelength range,” Opt. Express18(4), 3911–3916 (2010).
    [CrossRef] [PubMed]
  17. J. E. Sharping, J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, “Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator,” Opt. Express16(22), 18050–18056 (2008).
    [CrossRef] [PubMed]
  18. R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Synchronously pumped photonic crystal fiber-based optical parametric oscillator,” Opt. Lett.37(15), 3156–3158 (2012).
    [CrossRef] [PubMed]
  19. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express21(6), 6777–6782 (2013).
    [CrossRef] [PubMed]
  20. G. V. der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
    [CrossRef]
  21. D. Gou, S. Yang, F. Yin, L. Zhang, F. Xing, H. Chen, M. Chen, and S. Xie, “SESAM-based ring-cavity all-normal-dispersion tunable ytterbium mode-locked fiber laser,” in Proceedings of OptoElectronics and Communications Conference (OECC), Paper TuPL-16 (2013).
  22. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2007).
  23. T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: Theory and experiments,” J. Lightwave Technol.23(12), 4067–4073 (2005).
    [CrossRef]

2013

2012

2011

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47(12), 1514–1518 (2011).
[CrossRef]

G. V. der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

2010

2009

2008

2007

2005

2004

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
[CrossRef] [PubMed]

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

2003

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28(22), 2225–2227 (2003).
[CrossRef] [PubMed]

2002

1999

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

1977

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett.30(7), 340–342 (1977).
[CrossRef]

Agrawal, G. P.

Andrekson, P. A.

Babin, S. A.

Biancalana, F.

Birks, T. A.

Broaddus, D.

Cheung, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett.34(7), 989–991 (2009).
[CrossRef] [PubMed]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett.21(17), 1223–1225 (2009).
[CrossRef]

Chui, P. C.

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett.21(17), 1223–1225 (2009).
[CrossRef]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett.34(7), 989–991 (2009).
[CrossRef] [PubMed]

Coen, S.

Deng, Y.

der Westhuizen, G. V.

G. V. der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

Devgan, P.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
[CrossRef]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Foster, M. A.

Gaeta, A. L.

Gu, C.

Habert, R.

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47(12), 1514–1518 (2011).
[CrossRef]

Harvey, J. D.

Jain, R. K.

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett.30(7), 340–342 (1977).
[CrossRef]

Joly, N.

Kablukov, S. I.

Karlsson, M.

Kazovsky, L. G.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett.27(16), 1439–1441 (2002).
[CrossRef] [PubMed]

Kelleher, E. J. R.

Kiani, L.

Knight, J. C.

Knox, W. H.

Kudlinski, A.

Kumar, P.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
[CrossRef]

Lasri, J.

J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express15(4), 1474–1479 (2007).
[CrossRef] [PubMed]

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
[CrossRef]

Leonhardt, R.

Lin, C.

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett.30(7), 340–342 (1977).
[CrossRef]

Lin, Q.

Lu, F.

Lyngnes, O.

Marhic, M. E.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett.27(16), 1439–1441 (2002).
[CrossRef] [PubMed]

Marie, V.

Murdoch, S. G.

Murray, R. T.

Mussot, A.

Nilsson, J.

G. V. der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

Pailo, C.

Popov, S. V.

Russell, P. St. J.

Sanborn, J. R.

Sharping, J. E.

Stolen, R. H.

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett.30(7), 340–342 (1977).
[CrossRef]

Sylvestre, T.

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47(12), 1514–1518 (2011).
[CrossRef]

Tang, R.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
[CrossRef]

Taylor, J. R.

Torounidis, T.

Tsai, T.-E.

Vogel, K.

Wadsworth, W. J.

Wong, G. K. L.

Wong, K. K. Y.

Wong, K. K.-Y.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

Xu, Y. Q.

Yang, S.

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett.21(17), 1223–1225 (2009).
[CrossRef]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett.34(7), 989–991 (2009).
[CrossRef] [PubMed]

Zhou, Y.

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett.34(7), 989–991 (2009).
[CrossRef] [PubMed]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett.21(17), 1223–1225 (2009).
[CrossRef]

Zlobina, E. A.

Appl. Phys. Lett.

R. H. Stolen, C. Lin, and R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett.30(7), 340–342 (1977).
[CrossRef]

IEEE J. Quantum Electron.

G. V. der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron.47(12), 1514–1518 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, “A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime,” IEEE Photon. Technol. Lett.15(8), 1058–1060 (2003).
[CrossRef]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “A time-dispersion-tuned picosecond fiber-optical parametric oscillator,” IEEE Photon. Technol. Lett.21(17), 1223–1225 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

J. E. Sharping, C. Pailo, C. Gu, L. Kiani, and J. R. Sanborn, “Microstructure fiber optical parametric oscillator with femtosecond output in the 1200 to 1350 nm wavelength range,” Opt. Express18(4), 3911–3916 (2010).
[CrossRef] [PubMed]

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Tunable CW all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express21(6), 6777–6782 (2013).
[CrossRef] [PubMed]

R. T. Murray, E. J. R. Kelleher, S. V. Popov, A. Mussot, A. Kudlinski, and J. R. Taylor, “Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion,” Opt. Express21(13), 15826–15833 (2013).
[CrossRef] [PubMed]

J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express15(4), 1474–1479 (2007).
[CrossRef] [PubMed]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express15(6), 2947–2952 (2007).
[CrossRef] [PubMed]

J. E. Sharping, J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, “Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator,” Opt. Express16(22), 18050–18056 (2008).
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Science

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Other

D. Gou, S. Yang, F. Yin, L. Zhang, F. Xing, H. Chen, M. Chen, and S. Xie, “SESAM-based ring-cavity all-normal-dispersion tunable ytterbium mode-locked fiber laser,” in Proceedings of OptoElectronics and Communications Conference (OECC), Paper TuPL-16 (2013).

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The calculated group velocity dispersion for the fundamental mode of the PCF; the vertical dotted line corresponds to the zero-dispersion wavelength of 1064 nm. The inset shows the SEM image of the cross section of the PCF used in the experiment.

Fig. 2
Fig. 2

Experimental setup of the picosecond FOPO. MLFL: mode-locked Ytterbium-doped fiber laser. TBPF: tunable band-pass filter. WDM: wavelength division multiplex. YDF: Ytterbium-doped fiber. PC: polarization controller. PCF: photonic crystal fiber. ODL: optical delay line. OSA: optical spectrum analyzer.

Fig. 3
Fig. 3

(a) The MI gain spectrum of the optical parametric generator and (b) the optical spectra of the continuously tuned output of the FOPO for the pump wavelength of 1064.8 nm at the anomalous dispersion regime of the PCF.

Fig. 4
Fig. 4

(a) The MI gain spectrum of the optical parametric generator and (b) the optical spectra of the continuously tunable output of the FOPO for the pump wavelength of 1063.4 nm at the normal dispersion regime of the PCF.

Fig. 5
Fig. 5

Output wavelength of the FOPO versus the relative optical delay time with the oscillating wavelength of 1151 nm. The blue signs mean the adjusting of the pump wavelength.

Fig. 6
Fig. 6

(a) The average idler power and 3-dB bandwidth as function of the output idler wavelength. (b) Autocorrelation waveforms of the amplified pump pulse and the idler of the FOPO output.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δβ+2γP=0
Δβ= β s + β i 2 β p
ΔT=|t( λ 1 )t( λ 2 )|=| i L i D i ( λ c ) | λ 1 λ 2 ||,i=p,s,a

Metrics