Abstract

Integrated Microwave photonics (IMWP) signal processing using Photonic Integrated Circuits (PICs) has attracted a great deal of attention in recent years as an enabling technology for a number of functionalities not attainable by purely microwave solutions. In this context, integrated waveguide Bragg grating (WBG) devices constitute a particularly attractive approach thanks to their compactness and flexibility in producing arbitrarily defined amplitude and phase responses, by directly acting on coupling coefficient and perturbations of the grating profile. In this article, we review recent advances in the field of integrated WBGs applied to MWP, analyzing the advantages leveraged by an integrated realization. We provide a perspective on the exciting possibilities offered by the silicon photonics platform in the field of MWP, potentially enabling integration of highly-complex active and passive functionalities with high yield on a single chip, with a particular focus on the use of WBGs as basic building blocks for linear filtering operations. We demonstrate the versatility of WBG-based devices by proposing and experimentally demonstrating a novel, continuously-tunable, integrated true-time-delay (TTD) line based on a very simple dual phase-shifted WBG (DPS-WBG).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon.1, 319–330 (2007).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol.24, 4628–4641 (2006).
    [CrossRef]
  3. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54, 832–846 (2006).
    [CrossRef]
  4. W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
    [CrossRef]
  5. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
    [CrossRef]
  6. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
    [CrossRef]
  7. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).
  8. T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol.15, 1277–1294 (1997).
    [CrossRef]
  9. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
    [CrossRef]
  10. M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express16, 9821–9828 (2008).
    [CrossRef] [PubMed]
  11. M. Li, J. Hayashi, and H. Li, “Advanced design of a complex fiber Bragg grating for a multichannel asymmetrical triangular filter,” J. Opt. Soc. Am. B26, 228–234 (2009).
    [CrossRef]
  12. B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
    [CrossRef]
  13. H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007).
    [CrossRef]
  14. L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
    [CrossRef]
  15. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
    [CrossRef]
  16. D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001).
    [CrossRef]
  17. M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express16, 19388–19394 (2008).
    [CrossRef]
  18. A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
    [CrossRef]
  19. M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
    [CrossRef]
  20. J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
    [CrossRef]
  21. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient raman fiber laser,” Opt. Express17, 23678–23683 (2009).
    [CrossRef]
  22. Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng.31, 297–324 (1999).
    [CrossRef]
  23. Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials312, 736–740 (2013).
    [CrossRef]
  24. Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett.20, 1718–1720 (2008).
    [CrossRef]
  25. M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett.34, 1717–1719 (2009).
    [CrossRef] [PubMed]
  26. M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express14, 1106–1112 (2006).
    [CrossRef] [PubMed]
  27. A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995).
    [CrossRef]
  28. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
    [CrossRef]
  29. A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
    [CrossRef]
  30. Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42, 2273–2277 (2003).
    [CrossRef] [PubMed]
  31. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
    [CrossRef]
  32. J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett.14, 687–689 (2002).
    [CrossRef]
  33. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006).
    [CrossRef]
  34. D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett.31, 1010–1012 (1995).
    [CrossRef]
  35. X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech.54, 880–886 (2006).
    [CrossRef]
  36. F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30, 2203–2205 (2005).
    [CrossRef] [PubMed]
  37. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
    [CrossRef]
  38. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
    [CrossRef]
  39. X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006).
    [CrossRef]
  40. J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
    [CrossRef]
  41. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
    [CrossRef]
  42. J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
    [CrossRef]
  43. M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
    [CrossRef]
  44. J. A. na and L. R. Chen, “Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping,” J. Opt. Soc. Am. B19, 2758–2769 (2002).
    [CrossRef]
  45. M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
    [CrossRef]
  46. M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
    [CrossRef]
  47. H. Shahoei, J. Yao, and , “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21, 7521–7527 (2013).
    [CrossRef] [PubMed]
  48. R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013).
    [CrossRef] [PubMed]
  49. R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett.25, 910–913 (2013).
    [CrossRef]
  50. R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE5, 7100311–7100311 (2013).
    [CrossRef]
  51. R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013).
    [CrossRef] [PubMed]
  52. R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett.37, 2604–2606 (2012).
    [CrossRef] [PubMed]
  53. T. E. Murphy, J. Ferrera, J. T. Hastings, M. J. Khan, E. M. Koontz, M. H. Lim, H. Haus, L. A. Kolodziejski, and H. I. Smith, “Development of fabrication techniques for building integrated-optical grating-based filters,” [Online.] Available: http://nanoweb.mit.edu/annual-report00/16 .
  54. T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech.58, 2992–3000 (2010).
    [CrossRef]
  55. R. Won, “Microwave photonics shines,” Nature Photon.5, 736 (2011).
    [CrossRef]
  56. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
    [CrossRef]
  57. S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.
  58. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
    [CrossRef]
  59. M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.
  60. T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
    [CrossRef]
  61. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
    [CrossRef] [PubMed]
  62. B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.
  63. M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
    [CrossRef]
  64. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).
  65. M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron.46, 774–782 (2010).
    [CrossRef]
  66. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
    [CrossRef] [PubMed]
  67. M. Verbist, D. V. Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Opt. Lett.38, 386–388 (2013).
    [CrossRef] [PubMed]
  68. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express21, 8953–8963 (2013).
    [CrossRef] [PubMed]
  69. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012).
    [CrossRef]
  70. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18, 27359–27370 (2010).
    [CrossRef]
  71. B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express16, 2398–2404 (2008).
    [CrossRef] [PubMed]
  72. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001).
    [CrossRef]
  73. M. Sumetsky, B. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express10, 332–340 (2002).
    [CrossRef] [PubMed]
  74. X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004).
    [CrossRef]
  75. M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
    [CrossRef]
  76. L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
    [CrossRef]
  77. N. Na, H. Frish, I-Wei Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband silicon-on-insulator grating coupler with low backreflection,” Opt. Lett.36, 2101–2103 (2011)
    [CrossRef] [PubMed]
  78. S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
    [CrossRef]
  79. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20, 11241–11246 (2012).
    [CrossRef] [PubMed]
  80. X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
    [CrossRef]
  81. K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19, 19514–19522 (2011).
    [CrossRef] [PubMed]
  82. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
    [CrossRef] [PubMed]
  83. M. J. Khan, Integrated Optical Filters using Bragg Gratings and Resonators (Ph.D. thesis, Massachussets Institute of Technology, 2002).
  84. M. Strain, Integrated Chirped Bragg Gratings for Dispersion Control (Ph.D. thesis, University of Glasgow, 2007), http://theses.gla.ac.uk/440/ .
  85. M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).
  86. M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
    [CrossRef]
  87. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
    [CrossRef]
  88. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24, 711–713 (1999).
    [CrossRef]
  89. M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett.49(2013).
    [CrossRef]
  90. M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).
  91. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawide-band pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36, 2363–2365 (2011).
    [CrossRef] [PubMed]
  92. D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19, 24838–24848 (2011).
    [CrossRef]
  93. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE2, 359–386 (2010).
    [CrossRef]
  94. M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett.33, 2458–2460 (2008).
    [CrossRef] [PubMed]
  95. L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
    [CrossRef]
  96. M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17, 19798–19807 (2009).
    [CrossRef] [PubMed]
  97. M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express15, 6152–6166 (2007).
    [CrossRef] [PubMed]
  98. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38, 727–729 (2013).
    [CrossRef] [PubMed]
  99. M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35, 223–225 (2010).
    [CrossRef] [PubMed]
  100. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22, 1559–1561 (2010).
    [CrossRef]
  101. M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34, 334–336 (2009).
    [CrossRef] [PubMed]
  102. C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
    [CrossRef] [PubMed]
  103. J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011).
    [CrossRef]
  104. C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.
  105. E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012).
    [CrossRef] [PubMed]
  106. M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
    [CrossRef]
  107. X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.
  108. R. J. Mailloux, Phased Array Antenna Handbook (Artech House, Boston, MA, 2005).
  109. J. Yao, “Microwave photonics,” J. Lightw. Technol.27, 314–335 (2009).
    [CrossRef]
  110. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
    [CrossRef]
  111. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011).
    [CrossRef] [PubMed]
  112. A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18, 208–210 (2006).
    [CrossRef]
  113. M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
    [CrossRef]
  114. M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
    [CrossRef] [PubMed]
  115. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
    [CrossRef] [PubMed]
  116. X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.
  117. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011).
    [CrossRef] [PubMed]
  118. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
    [CrossRef] [PubMed]
  119. D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19, 2401–2409 (2011).
    [CrossRef] [PubMed]
  120. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
    [CrossRef] [PubMed]
  121. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
    [CrossRef]
  122. J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves [Online.] Available: http://www.iteam.upv.es/revista/2012/5_ITEAM_2012.pdf (2012).
  123. I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
    [CrossRef]

2013 (20)

Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials312, 736–740 (2013).
[CrossRef]

R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett.25, 910–913 (2013).
[CrossRef]

R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE5, 7100311–7100311 (2013).
[CrossRef]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett.49(2013).
[CrossRef]

M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[CrossRef]

M. Verbist, D. V. Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Opt. Lett.38, 386–388 (2013).
[CrossRef] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38, 727–729 (2013).
[CrossRef] [PubMed]

R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013).
[CrossRef] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

H. Shahoei, J. Yao, and , “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21, 7521–7527 (2013).
[CrossRef] [PubMed]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express21, 8953–8963 (2013).
[CrossRef] [PubMed]

R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013).
[CrossRef] [PubMed]

C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[CrossRef] [PubMed]

2012 (8)

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012).
[CrossRef] [PubMed]

M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[CrossRef] [PubMed]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20, 11241–11246 (2012).
[CrossRef] [PubMed]

R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett.37, 2604–2606 (2012).
[CrossRef] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
[CrossRef] [PubMed]

I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[CrossRef]

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012).
[CrossRef]

2011 (16)

R. Won, “Microwave photonics shines,” Nature Photon.5, 736 (2011).
[CrossRef]

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
[CrossRef]

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011).
[CrossRef]

D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19, 2401–2409 (2011).
[CrossRef] [PubMed]

N. Na, H. Frish, I-Wei Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband silicon-on-insulator grating coupler with low backreflection,” Opt. Lett.36, 2101–2103 (2011)
[CrossRef] [PubMed]

S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawide-band pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36, 2363–2365 (2011).
[CrossRef] [PubMed]

K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19, 19514–19522 (2011).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19, 24838–24848 (2011).
[CrossRef]

2010 (11)

M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35, 223–225 (2010).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18, 27359–27370 (2010).
[CrossRef]

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron.46, 774–782 (2010).
[CrossRef]

T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech.58, 2992–3000 (2010).
[CrossRef]

S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22, 1559–1561 (2010).
[CrossRef]

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE2, 359–386 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

2009 (6)

2008 (6)

2007 (5)

H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon.1, 319–330 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
[CrossRef]

L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
[CrossRef]

M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express15, 6152–6166 (2007).
[CrossRef] [PubMed]

2006 (8)

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express14, 1106–1112 (2006).
[CrossRef] [PubMed]

A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18, 208–210 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol.24, 4628–4641 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54, 832–846 (2006).
[CrossRef]

X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech.54, 880–886 (2006).
[CrossRef]

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006).
[CrossRef]

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006).
[CrossRef]

2005 (4)

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30, 2203–2205 (2005).
[CrossRef] [PubMed]

2004 (2)

X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
[CrossRef]

2003 (1)

2002 (3)

2001 (3)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001).
[CrossRef]

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001).
[CrossRef]

2000 (1)

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

1999 (2)

Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng.31, 297–324 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24, 711–713 (1999).
[CrossRef]

1997 (5)

M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).

T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol.15, 1277–1294 (1997).
[CrossRef]

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
[CrossRef]

1996 (2)

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
[CrossRef]

1995 (3)

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995).
[CrossRef]

D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett.31, 1010–1012 (1995).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

1991 (1)

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Abraha, S. T.

Abtahi, M.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
[CrossRef]

Ahuja, A.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Albert, J.

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Andres, M.

Asghari, M. H.

Ashrafi, R.

Ayazi, A.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Azaña, J.

R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett.25, 910–913 (2013).
[CrossRef]

R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE5, 7100311–7100311 (2013).
[CrossRef]

R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013).
[CrossRef] [PubMed]

R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013).
[CrossRef] [PubMed]

R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett.37, 2604–2606 (2012).
[CrossRef] [PubMed]

K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19, 19514–19522 (2011).
[CrossRef] [PubMed]

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE2, 359–386 (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34, 334–336 (2009).
[CrossRef] [PubMed]

M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express15, 6152–6166 (2007).
[CrossRef] [PubMed]

L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
[CrossRef]

Baehr-Jones, T.

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Barkai, A.

Barton, J. S.

Baumann, I.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
[CrossRef]

Bauters, J.

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

Bauters, J. F.

Beeker, W.

Belhadj, N.

Belisle, C.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

Bennion, I.

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995).
[CrossRef]

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

Berceli, T.

T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech.58, 2992–3000 (2010).
[CrossRef]

Bernhardi, E.

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

Bernhardi, E. H.

Bernstein, N.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Birks, T.

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

Blumenthal, D. J.

Bogaerts, W.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Bowers, J. E.

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

Bruinink, C. M.

Bruns, J.

Burla, M.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[CrossRef]

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[CrossRef] [PubMed]

D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19, 24838–24848 (2011).
[CrossRef]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011).
[CrossRef] [PubMed]

Calia, D. B.

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon.1, 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[CrossRef]

Cappuzzo, M.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Carballar, A.

L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
[CrossRef]

Chen, A.

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

Chen, E.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Chen, L. R.

M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).

M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett.49(2013).
[CrossRef]

J. A. na and L. R. Chen, “Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping,” J. Opt. Soc. Am. B19, 2758–2769 (2002).
[CrossRef]

Chen, W.

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Chen, X.

Chen, X. F.

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006).
[CrossRef]

Chen, Z.

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

Cheung, K. C.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

Chevalier, L.

Chi, H.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

Chrostowski, L.

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011).
[CrossRef] [PubMed]

X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[CrossRef]

X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
[CrossRef]

Cunningham, J.

Dai, Y. T.

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

Dastmalchi, M.

Davenport, M.

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

De Ridder, R.

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

de Ridder, R. M.

de Sterke, C.

Delgado-Pinar, M.

Deng, Z. C.

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006).
[CrossRef]

Diez, A.

Dijkstra, K.

Ding, R.

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Doerfler, M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

Dong, L.

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

Doucet, S.

Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett.20, 1718–1720 (2008).
[CrossRef]

Dreyer, K.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Duan, N.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

Duchesne, D.

Edge, C.

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995).
[CrossRef]

Eggleton, B.

M. Sumetsky, B. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express10, 332–340 (2002).
[CrossRef] [PubMed]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol.15, 1277–1294 (1997).
[CrossRef]

Fainman, Y.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

Fang, Q.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

Fard, S. T.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

Fathallah, H.

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

Fathpour, S.

S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[CrossRef]

Fells, J.

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

Feng, Y.

Fermann, M.

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

Fish, G.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

Flueckiger, J.

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

Fouli, K.

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

Frish, H.

Fujii, T.

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
[CrossRef]

Galland, C.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

Gasparyan, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Gasulla, I.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[CrossRef]

Gates, J.

C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.

Gates, J. C.

Ge, J.

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011).
[CrossRef]

George, R.

Gill, D.

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Giuntoni, I.

Gomez, L.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Gould, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Grange, J.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Greenberg, M.

Griffin, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Grist, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
[CrossRef] [PubMed]

X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.

Guo, Y.

Harel, O.

Harris, N.

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Harter, D.

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

Hayashi, J.

He, L.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Heck, M. J. R.

Heideman, R.

Heideman, R. G.

Herczfeld, P.

T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech.58, 2992–3000 (2010).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Hochberg, M.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Hoekman, M.

Holmes, C.

Hryniewicz, J. V.

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Hsieh, I-Wei

Hu, J.

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

Hua, P.

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

Hunter, D.

D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett.31, 1010–1012 (1995).
[CrossRef]

Hutchinson, J.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

Ikeda, K.

Jaeger, N.

X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.

Jaeger, N. A. F.

Janner, D.

John, D. D.

Johns, S.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Johnson, F. G.

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).

Kasper, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Khan, M. J.

M. J. Khan, Integrated Optical Filters using Bragg Gratings and Resonators (Ph.D. thesis, Massachussets Institute of Technology, 2002).

Khan, M. R.

Khan, M. R. H.

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012).
[CrossRef] [PubMed]

Khan, S.

S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[CrossRef]

Kim, B.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

Kim, Y.

Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett.20, 1718–1720 (2008).
[CrossRef]

King, O.

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Kirk, J.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Koch, B. R.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

Koonen, A. M. J.

Krishnamoorthy, A.

Kroushkov, D. I.

Kudo, Y.

Kulishov, M.

Lahoz, F.

A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18, 208–210 (2006).
[CrossRef]

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
[CrossRef]

LaRochelle, S.

R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013).
[CrossRef] [PubMed]

R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013).
[CrossRef] [PubMed]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express21, 8953–8963 (2013).
[CrossRef] [PubMed]

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
[CrossRef]

Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett.20, 1718–1720 (2008).
[CrossRef]

Laskowski, E.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Lee, J.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Lee, R. K.

Leinse, A.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[CrossRef]

M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18, 27359–27370 (2010).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[CrossRef]

Li, H.

Li, J.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Li, M.

R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett.25, 910–913 (2013).
[CrossRef]

R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE5, 7100311–7100311 (2013).
[CrossRef]

R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013).
[CrossRef] [PubMed]

R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013).
[CrossRef] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
[CrossRef]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22, 1559–1561 (2010).
[CrossRef]

M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35, 223–225 (2010).
[CrossRef] [PubMed]

M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett.34, 1717–1719 (2009).
[CrossRef] [PubMed]

M. Li, J. Hayashi, and H. Li, “Advanced design of a complex fiber Bragg grating for a multichannel asymmetrical triangular filter,” J. Opt. Soc. Am. B26, 228–234 (2009).
[CrossRef]

M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17, 19798–19807 (2009).
[CrossRef] [PubMed]

M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express16, 9821–9828 (2008).
[CrossRef] [PubMed]

M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express16, 19388–19394 (2008).
[CrossRef]

H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007).
[CrossRef]

Li, W.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012).
[CrossRef]

Li, Z.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Lim, A. E. J.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

Lim, A. E.-J.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Lim, A.-J.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

Lin, C.

Lin, Z.

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

Liow, T.-Y.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Liu, J.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
[CrossRef]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Liu, X.

X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004).
[CrossRef]

Liu, Y.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42, 2273–2277 (2003).
[CrossRef] [PubMed]

J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett.14, 687–689 (2002).
[CrossRef]

Lloret, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

Lo, G. Q.

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

Lo, G.-Q.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Loayssa, A.

A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18, 208–210 (2006).
[CrossRef]

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001).
[CrossRef]

Luo, Y.

Luo, Y. X.

Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials312, 736–740 (2013).
[CrossRef]

Maat, P.

Madsen, C.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Magné, J.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
[CrossRef]

Maier, M.

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

Mailloux, R. J.

R. J. Mailloux, Phased Array Antenna Handbook (Artech House, Boston, MA, 2005).

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

Marpaung, D.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[CrossRef]

M. Burla, C. G. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt., 51, 789–802 (2012).
[CrossRef] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011).
[CrossRef] [PubMed]

D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19, 24838–24848 (2011).
[CrossRef]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18, 27359–27370 (2010).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[CrossRef]

Marpaung, D. A. I.

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
[CrossRef]

Mennea, P. L.

Mikkelsen, B.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Minasian, R.

X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech.54, 880–886 (2006).
[CrossRef]

D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett.31, 1010–1012 (1995).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54, 832–846 (2006).
[CrossRef]

Mirshafiei, M.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
[CrossRef]

Mizrahi, A.

Mollenauer, L.

X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004).
[CrossRef]

Molony, A.

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995).
[CrossRef]

Mookherjea, S.

M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
[CrossRef]

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

Morandotti, R.

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

Muriel, M. A.

na, J. A.

Na, N.

Newberg, I.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Nezhad, M.

Ng, J.

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

Ng, W.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Nielsen, T.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001).
[CrossRef]

Norberg, E. J.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

Novack, A.

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon.1, 319–330 (2007).
[CrossRef]

Nowak, W.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
[CrossRef]

Okonkwo, C. M.

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001).
[CrossRef]

Painchaud, Y.

Paquet, S.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

Park, Y.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001).
[CrossRef]

Patel, S.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Payson, P.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

Perez-Millan, P.

Petermann, K.

Piels, M.

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

Pinguet, T.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Pollnau, M.

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012).
[CrossRef] [PubMed]

Preciado, M. A.

Pruneri, V.

Qi, G. H.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Rad, M.

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

Raj, K.

Rao, Y.-J.

Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng.31, 297–324 (1999).
[CrossRef]

Rasras, M.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Ratner, D. M.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

Raybon, G.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

Reekie, L.

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

Rivas, L.

L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
[CrossRef]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Roeloffzen, C.

Roeloffzen, C. G.

Roeloffzen, C. G. H.

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012).
[CrossRef] [PubMed]

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

Rogers, H.

C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.

Rogers, H. L.

Rogers, J.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Rong, H.

Rothenberg, J.

H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007).
[CrossRef]

Rusch, L.

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

Rusch, L. A.

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
[CrossRef]

Russell, P.

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

Rutkowska, K.

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[CrossRef]

Sancho, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

Sauer, M.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
[CrossRef]

Scherer, A.

Schmidt, S.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

Schneider, M. A.

M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
[CrossRef]

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol.24, 4628–4641 (2006).
[CrossRef]

Seifert, J.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
[CrossRef]

Seregelyi, J.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

Shahoei, H.

Shao, L.-Y.

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
[CrossRef]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Sheng, Y.

H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007).
[CrossRef]

Shi, W.

Shin, J.-H.

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

Shubin, I.

Sima, C.

Simard, A. D.

Singh, K.

L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

Smith, P.

C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.

Smith, P. G. R.

Song, J.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

Soref, R. A.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

Sorel, M.

Spasojevic, M.

M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).

M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett.49(2013).
[CrossRef]

Stolarek, D.

Strain, M.

Streshinsky, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Stulz, S.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Sugden, K.

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

Sumetsky, M.

Sun, J.

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

Tan, D.

Tangdiongga, E.

Tangonan, G.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Taylor, L. R.

Teo, S. H.-G.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Thourhout, D. V.

Tillack, B.

Toughlian, E. N.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

Tu, X.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001).
[CrossRef]

van Wolferen, H. A. G. M.

Verbist, M.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
[CrossRef]

Walston, A.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

Wang, C.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011).
[CrossRef]

Wang, J.

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

Wang, X.

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011).
[CrossRef] [PubMed]

X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.

X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[CrossRef]

Wang, Y.

Wei, X.

X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Westbrook, P.

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

Wickham, M. G.

M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).

Williams, J. A. R.

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

Williams, K. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol.24, 4628–4641 (2006).
[CrossRef]

Won, R.

R. Won, “Microwave photonics shines,” Nature Photon.5, 736 (2011).
[CrossRef]

Wong-Foy, A.

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

Worhoff, K.

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

Wörhoff, K.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
[CrossRef]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Xie, S. Z.

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

Xu, Y.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Xuan, Z.

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

Yang, J.

Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42, 2273–2277 (2003).
[CrossRef] [PubMed]

J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett.14, 687–689 (2002).
[CrossRef]

Yang, X.

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

Yao, J.

H. Shahoei, J. Yao, and , “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21, 7521–7527 (2013).
[CrossRef] [PubMed]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012).
[CrossRef]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
[CrossRef]

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[CrossRef]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22, 1559–1561 (2010).
[CrossRef]

M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35, 223–225 (2010).
[CrossRef] [PubMed]

J. Yao, “Microwave photonics,” J. Lightw. Technol.27, 314–335 (2009).
[CrossRef]

M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17, 19798–19807 (2009).
[CrossRef] [PubMed]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30, 2203–2205 (2005).
[CrossRef] [PubMed]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
[CrossRef]

Yao, J. P.

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006).
[CrossRef]

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
[CrossRef]

Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42, 2273–2277 (2003).
[CrossRef] [PubMed]

J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett.14, 687–689 (2002).
[CrossRef]

Yariv, A.

Yeap, T. H.

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
[CrossRef]

Yi, X.

X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech.54, 880–886 (2006).
[CrossRef]

Yu, C.

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

Yu, M.

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

Yu, X.

Yun, H.

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
[CrossRef] [PubMed]

X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[CrossRef]

X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.

Zalvidea, D.

Zamek, S.

Zeng, F.

Zervas, M.

C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.

Zervas, M. N.

Zhang, H.

Zhang, W.

Zhang, X.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

Zhang, Y.

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

Zhang, Y. J.

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Zheng, X.

Zhou, B.

Zhu, X.

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011).
[CrossRef]

Zhuang, L.

Zimmermann, L.

Zmuda, H.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

14th International Conference on Transparent Optical Networks (ICTON) (1)

I. Gasulla and J. Capmany, “Analog filtered links: A unifying approach for microwave photonic systems,” in “14th International Conference on Transparent Optical Networks (ICTON),” (2012), pp. 1–4.
[CrossRef]

2010 23rd Annual Meeting of the IEEE Photonics Society (1)

S. Khan and S. Fathpour, “Electronically tunable silicon photonic delay lines,” in “2010 23rd Annual Meeting of the IEEE Photonics Society,” (2010), pp. 234–235.
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical-fiber by UV exposure through a phase mask,” Appl. Phys. Lett.62, 1035–1037 (1993).
[CrossRef]

A. Galvanauskas, M. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett.66, 1053–1055 (1995).
[CrossRef]

Applied Mechanics and Materials (1)

Y. X. Luo, “Study of fiber Bragg grating sensor in dam safety monitoring,” Applied Mechanics and Materials312, 736–740 (2013).
[CrossRef]

Electron. Lett. (3)

A. Molony, C. Edge, and I. Bennion, “Fibre grating time delay element for phased array antennas,” Electron. Lett.31, 1485–1486 (1995).
[CrossRef]

D. Hunter and R. Minasian, “Reflectively tapped fibre optic transversal filter using in-fibre Bragg gratings,” Electron. Lett.31, 1010–1012 (1995).
[CrossRef]

M. Spasojevic and L. R. Chen, “Discretely tunable optical delay lines using serial and step-chirped sidewall Bragg gratings in SOI,” Electron. Lett.49(2013).
[CrossRef]

IEEE Commun. Mag. (1)

M. Rad, K. Fouli, H. Fathallah, L. Rusch, and M. Maier, “Passive optical network monitoring: challenges and requirements,” IEEE Commun. Mag.49, s45–S52 (2011).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37, 165–173 (2001).
[CrossRef]

M. Strain and M. Sorel, “Design and fabrication of integrated chirped Bragg gratings for on-chip dispersion control,” IEEE J. Quantum Electron.46, 774–782 (2010).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

T.-Y. Liow, J. Song, X. Tu, A.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Topics Quantum Electron.19, 8200312–8200312 (2013).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett.21, 52–54 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (22)

J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett.18, 2587–2589 (2006).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9, 1529–1531 (1997).
[CrossRef]

J. P. Yao, J. Yang, and Y. Liu, “Continuous true-time-delay beamforming employing a multiwavelength tunable fiber laser source,” IEEE Photon. Technol. Lett.14, 687–689 (2002).
[CrossRef]

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9, 241–243 (1997).
[CrossRef]

Y. Kim, S. Doucet, and S. LaRochelle, “50-channel 100-GHz-spaced multiwavelength fiber lasers with single-frequency and single-polarization operation,” IEEE Photon. Technol. Lett.20, 1718–1720 (2008).
[CrossRef]

J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett.14, 1020–1022 (2004).
[CrossRef]

B. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. Rogers, P. Westbrook, T. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.12, 1022–1024 (2000).
[CrossRef]

J. Hu, Z. Chen, X. Yang, J. Ng, and C. Yu, “100-km long distance fiber Bragg grating sensor system based on erbium-doped fiber and raman amplification,” IEEE Photon. Technol. Lett.22, 1422–1424 (2010).
[CrossRef]

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett.8, 1331–1333 (1996).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett.13, 726–728 (2001).
[CrossRef]

R. Ashrafi, M. Li, and J. Azaña, “Tsymbol/s optical coding based on long-period gratings,” IEEE Photon. Technol. Lett.25, 910–913 (2013).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett.23, 314–316 (2011).
[CrossRef]

M. Li, L.-Y. Shao, J. Albert, and J. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett.23, 251–253 (2011).
[CrossRef]

M. Rasras, C. Madsen, M. Cappuzzo, E. Chen, L. Gomez, E. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Grange, and S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett.17, 834–836 (2005).
[CrossRef]

L. Rivas, K. Singh, A. Carballar, and J. Azaña, “Arbitrary-order ultrabroadband all-optical differentiators based on fiber Bragg gratings,” IEEE Photon. Technol. Lett.19, 1209–1211 (2007).
[CrossRef]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett.22, 1559–1561 (2010).
[CrossRef]

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett.13, 1334–1336 (2001).
[CrossRef]

X. Liu, L. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett.16, 305–307 (2004).
[CrossRef]

L. He, Y. Liu, C. Galland, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,” IEEE Photon. Technol. Lett., 25, 1358–1361 (2013).
[CrossRef]

M. R. H. Khan, E. Bernhardi, D. A. I. Marpaung, M. Burla, R. De Ridder, K. Worhoff, M. Pollnau, and C. G. H. Roeloffzen, “Dual-frequency distributed feedback laser with optical frequency locked loop for stable microwave signal generation,” IEEE Photon. Technol. Lett.24, 1431–1433 (2012).
[CrossRef]

A. Loayssa and F. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.18, 208–210 (2006).
[CrossRef]

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated Photonic Ku-Band Beamformer Chip with Continuous Amplitude and Delay Control,” IEEE Photon. Technol. Lett., 25, 1145–1148 (2013).
[CrossRef]

IEEE Photon. Technol. Lett., IEEE (1)

L. Dong, P. Hua, T. Birks, L. Reekie, and P. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett., IEEE8, 1656–1658 (1996).
[CrossRef]

IEEE Solid-State Circuits Magazine (1)

M. Hochberg, N. Harris, R. Ding, Y. Zhang, A. Novack, Z. Xuan, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circuits Magazine5, 48–58 (2013).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (7)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60, 1287–1296 (2012).
[CrossRef]

T. Berceli and P. Herczfeld, “Microwave photonics - a historical perspective,” IEEE Trans. Microw. Theory Tech.58, 2992–3000 (2010).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54, 832–846 (2006).
[CrossRef]

X. F. Chen, Z. C. Deng, and J. P. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Tech.54, 804–809 (2006).
[CrossRef]

A. Molony, Z. Lin, J. A. R. Williams, I. Bennion, C. Edge, and J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microw. Theory Tech.45, 1527–1530 (1997).
[CrossRef]

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53, 3090–3097 (2005).
[CrossRef]

X. Yi and R. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters,” IEEE Trans. Microw. Theory Tech.54, 880–886 (2006).
[CrossRef]

J. Biophotonics (1)

X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J. Biophotonics (2013).
[CrossRef]

J. Lightw. Technol. (8)

J. Yao, “Microwave photonics,” J. Lightw. Technol.27, 314–335 (2009).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol.24, 201–209 (2006).
[CrossRef]

M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: Analysis and experiment,” J. Lightw. Technol.26, 628–635 (2008).
[CrossRef]

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightw. Technol.9, 1124–1131 (1991).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol.24, 4628–4641 (2006).
[CrossRef]

H. Li, M. Li, Y. Sheng, and J. Rothenberg, “Advances in the design and fabrication of high-channel-count fiber Bragg gratings,” J. Lightw. Technol.25, 2739–2750 (2007).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightw. Technol.15, 1277–1294 (1997).
[CrossRef]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol.31, 571–586 (2013).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser & Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser & Photon. Rev.4, 751–779 (2010).
[CrossRef]

Nat Photon (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat Photon4, 117–122 (2010).
[CrossRef]

Nat. Commun. (1)

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun.1(2010).
[CrossRef] [PubMed]

Nature Photon. (3)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
[CrossRef]

R. Won, “Microwave photonics shines,” Nature Photon.5, 736 (2011).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon.1, 319–330 (2007).
[CrossRef]

Opt. Commun. (1)

J. Ge, C. Wang, and X. Zhu, “Fractional optical Hilbert transform using phase shifted fiber Bragg gratings,” Opt. Commun.284, 3251–3257 (2011).
[CrossRef]

Opt. Express (22)

M. Sumetsky, B. Eggleton, and C. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express10, 332–340 (2002).
[CrossRef] [PubMed]

M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17, 19798–19807 (2009).
[CrossRef] [PubMed]

Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient raman fiber laser,” Opt. Express17, 23678–23683 (2009).
[CrossRef]

M. Delgado-Pinar, D. Zalvidea, A. Diez, P. Perez-Millan, and M. Andres, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express14, 1106–1112 (2006).
[CrossRef] [PubMed]

M. Kulishov and J. Azaña, “Design of high-order all-optical temporal differentiators based on multiple-phase-shifted fiber Bragg gratings,” Opt. Express15, 6152–6166 (2007).
[CrossRef] [PubMed]

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Impact of group delay ripples of chirped fiber grating on optical beamforming networks,” Opt. Express16, 2398–2404 (2008).
[CrossRef] [PubMed]

M. Li and H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensator based on a phase-only sampled fiber Bragg grating,” Opt. Express16, 9821–9828 (2008).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18, 27359–27370 (2010).
[CrossRef]

D. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. Nezhad, A. Krishnamoorthy, K. Raj, J. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19, 2401–2409 (2011).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19, 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express, 19, 23162–23170 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19, 24838–24848 (2011).
[CrossRef]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20, 11241–11246 (2012).
[CrossRef] [PubMed]

K. Rutkowska, D. Duchesne, M. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express19, 19514–19522 (2011).
[CrossRef] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20, 15547–15558 (2012).
[CrossRef] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express21, 3633–3650 (2013).
[CrossRef] [PubMed]

R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, “Superluminal space-to-time mapping in grating-assisted co-directional couplers,” Opt. Express21, 6249–6256 (2013).
[CrossRef] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express21, 6733–6738 (2013).
[CrossRef] [PubMed]

H. Shahoei, J. Yao, and , “A continuously tunable multi-tap complex-coefficient microwave photonic filter based on a tilted fiber Bragg grating,” Opt. Express21, 7521–7527 (2013).
[CrossRef] [PubMed]

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express21, 8953–8963 (2013).
[CrossRef] [PubMed]

M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating,” Opt. Express16, 19388–19394 (2008).
[CrossRef]

Opt. Laser Eng. (1)

Y.-J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Opt. Laser Eng.31, 297–324 (1999).
[CrossRef]

Opt. Lett. (15)

R. Ashrafi, M. Li, N. Belhadj, M. Dastmalchi, S. LaRochelle, and J. Azaña, “Experimental demonstration of superluminal space-to-time mapping in long period gratings,” Opt. Lett.38, 1419–1421 (2013).
[CrossRef] [PubMed]

C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett., 38, 3448–3451 (2013).
[CrossRef] [PubMed]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett.38, 727–729 (2013).
[CrossRef] [PubMed]

M. Verbist, D. V. Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Opt. Lett.38, 386–388 (2013).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett.36, 3999–4001 (2011).
[CrossRef] [PubMed]

R. Ashrafi and J. Azaña, “Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings,” Opt. Lett.37, 2604–2606 (2012).
[CrossRef] [PubMed]

E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser,” Opt. Lett.37, 181–183 (2012).
[CrossRef] [PubMed]

N. Na, H. Frish, I-Wei Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, “Efficient broadband silicon-on-insulator grating coupler with low backreflection,” Opt. Lett.36, 2101–2103 (2011)
[CrossRef] [PubMed]

S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawide-band pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36, 2363–2365 (2011).
[CrossRef] [PubMed]

M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett.33, 2458–2460 (2008).
[CrossRef] [PubMed]

M. Li and J. Yao, “All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating,” Opt. Lett.35, 223–225 (2010).
[CrossRef] [PubMed]

M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34, 334–336 (2009).
[CrossRef] [PubMed]

M. Li, X. Chen, T. Fujii, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett.34, 1717–1719 (2009).
[CrossRef] [PubMed]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett.30, 2203–2205 (2005).
[CrossRef] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24, 711–713 (1999).
[CrossRef]

Optics Communications (1)

J. Yao, “Photonic generation of microwave arbitrary waveforms,” Optics Communications284, 3723–3736 (2011). Special Issue on Optical Pulse Shaping, Arbitrary Waveform Generation, and Pulse Characterization.
[CrossRef]

Photonics Journal, IEEE (2)

R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” Photonics Journal, IEEE5, 7100311–7100311 (2013).
[CrossRef]

J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” Photonics Journal, IEEE2, 359–386 (2010).
[CrossRef]

Photonics North (1)

M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings and serial grating arrays,” in “Photonics North,” (2013).

Proc. of SPIE (1)

S. T. Chu, B. E. Little, J. V. Hryniewicz, F. G. Johnson, O. King, D. Gill, W. Chen, and W. Chen, “High Index Contrast Photonics Platform,” in “Proc. of SPIE,” vol. 6014, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, eds. (2005), vol. 6014, pp. 1–10.

Other (16)

M. Davenport, J. Bauters, M. Piels, A. Chen, A. Fang, and J. E. Bowers, “A 400 Gb/s WDM receiver using a low loss silicon nitride AWG integrated with hybrid silicon photodetectors,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.5.

T. E. Murphy, J. Ferrera, J. T. Hastings, M. J. Khan, E. M. Koontz, M. H. Lim, H. Haus, L. A. Kolodziejski, and H. I. Smith, “Development of fabrication techniques for building integrated-optical grating-based filters,” [Online.] Available: http://nanoweb.mit.edu/annual-report00/16 .

B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in “Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013,” (Optical Society of America, 2013), p. PDP5C.8.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon photonics platform,” arXiv:1203.0767 (2012).

C. Sima, J. Gates, H. Rogers, C. Holmes, M. Zervas, and P. Smith, “Integrated all-optical ssb modulator using photonic Hilbert transformer with planar Bragg gratings,” in “CLEO/Europe and EQEC 2011 Conference Digest,” (Optical Society of America, 2011), pp. CI4–5.

M. J. Khan, Integrated Optical Filters using Bragg Gratings and Resonators (Ph.D. thesis, Massachussets Institute of Technology, 2002).

M. Strain, Integrated Chirped Bragg Gratings for Dispersion Control (Ph.D. thesis, University of Glasgow, 2007), http://theses.gla.ac.uk/440/ .

M. G. Wickham, “Integrated optical time delay unit,” United States Patent (1997).

M. A. Schneider and S. Mookherjea, “Modeling light transmission in silicon waveguides,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4A.1.
[CrossRef]

X. Wang, H. Yun, and L. Chrostowski, “Integrated Bragg gratings in spiral waveguides,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTh4F.8.
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.10.1002/lpor.201200032 (2013).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999).

X. Wang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Multi-Period Bragg Gratings in Silicon Waveguides”, in “IEEE International Photonics Conference 2013 (IPC 2013)”, accepted for publication.

R. J. Mailloux, Phased Array Antenna Handbook (Artech House, Boston, MA, 2005).

X. Wang, W. Shi, S. Grist, H. Yun, N. Jaeger, and L. Chrostowski, “Narrow-band transmission filter using phase-shifted Bragg gratings in SOI waveguide,” in 2011 IEEE Photonics Conference, (2011), pp. 869–870.

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves [Online.] Available: http://www.iteam.upv.es/revista/2012/5_ITEAM_2012.pdf (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Photo of the a SOI chip including a set of WBGs (a). Zoom of the WBGs mask layout (b). Single WBG (c, d). SEM image of the strip waveguide with sidewall corrugations (e)

Fig. 2
Fig. 2

Spiral waveguide with WBGs operated as a switched tunable delay line, with polarization beam splitter (a), and with PSMZI and quarter-wave polarization rotator (from [85])

Fig. 3
Fig. 3

Uniform Bragg grating on a tapered-width rib waveguide (a) and drop-filter configuration (b) (from [79])

Fig. 4
Fig. 4

Schematic (a), waveguide structure (b) and SEM images (c) of the temporal differentiator devices based on π-phase shifted WBG (in figure: d=30 nm). Coupling coefficient κ versus recess depth d: this value also determines the operational bandwidth of the devices (d). Measured normalized intensity reflectivities for the first (e) and second order (f) differentiators compared to the theoretical responses. Time domain pulses before and after processing, for first (g) and second order differentiation (h) (from [98]).

Fig. 5
Fig. 5

Optial single-sideband filter architecture (a). Optical responses intensity (b) and phase (c) profiles of the PHT and of the broadband reflector. Picture of the heater tuning unit (c). Optical spectrum after SSB filtering (e) (from [98]).

Fig. 6
Fig. 6

Schematic of the dual-wavelength cavity based on Bragg grating (a), aligned with the calculated longitudinal field distribution of the respective laser wavelengths (b). Measured electrical spectrum (c) and RF frequency stability (d) (edited from [105]).

Fig. 7
Fig. 7

Measured reflection intensity and phase spectrum of the DPS-WBG

Fig. 8
Fig. 8

Schematic of the PS-WBG used as TTD tunable delay

Fig. 9
Fig. 9

Schematic of the waveguide layout (a), showing the Y-junction used to access the reflection port (b). SEM image of the rib waveguide with sidewall corrugations (c). Photo of the fiber coupling with the reflection (d) and input ports (e). (Images (a) and (b) edited from [66])

Fig. 10
Fig. 10

Tunable TTD operation

Fig. 11
Fig. 11

Amplitude and phase responses of the DPS-WBG for different length mismatch between the phase shift sections

Fig. 12
Fig. 12

Relative variation of amplitude and phase response (and in turn of the maximum RF delay) of the DPS-WBG for different grating strengths

Fig. 13
Fig. 13

Setup for continuously-tunable TTD demonstration

Fig. 14
Fig. 14

Optical single-sideband spectrum. Resolution bandwidth of the optical spectrum analyzer set at the instrument minimum (0.01 nm) and high sensitivity settings.

Fig. 15
Fig. 15

RF phase response showing the seamless delay tunability

Fig. 16
Fig. 16

Simulated directivity pattern of an 8-element uniform and equally-spaced (1.75 cm) phased array antenna optically-fed using the proposed DPS-WBG as basic delay unit. Note the squint-free behaviour over the complete band of operation.

Fig. 17
Fig. 17

Temperature control setup

Fig. 18
Fig. 18

Variation with temperature of the central frequency of the phase shift of the PSWBG

Fig. 19
Fig. 19

(a) schematic layout of the proposed CDC. (b) SEM image of the tapers (c) SEM image of the device corrugations (edited from [117]).

Fig. 20
Fig. 20

Envisioned schematic of a general purpose reconfigurable MWP signal processor based on CDCs. EOM: electro-optic modulator; PD: photodetector.

Tables (1)

Tables Icon

Table 1 Reported results of integrated WBGs for MWP applications (* indicates theoretical work)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ g ( ω c + ω RF ) = d φ ( ω ) d ω | ω = ω c + ω RF

Metrics