Abstract

Grüneisen parameter is a key temperature-dependent physical characteristic responsible for thermoelastic efficiency of materials. We propose a new methodology for accurate measurements of temperature dependence of Grüneisen parameter in optically absorbing solutions. We use two-dimensional optoacoustic (OA) imaging to improve accuracy of measurements. Our approach eliminates contribution of local optical fluence and absorbance. To validate the proposed methodology, we studied temperature dependence of aqueous cupric sulfate solutions in the range from 22 to 4°C. Our results for the most diluted salt perfectly matched known temperature dependence for the Grüneisen parameter of water. We also found that Grüneisen-temperature relationship for cupric sulfate exhibits linear trend with respect to the concentration. In addition to accurate measurements of Grüneisen changes with temperature, the developed technique provides a basis for future high precision OA temperature monitoring in live tissues.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), pp. 34/31–34/34.
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  3. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
    [CrossRef] [PubMed]
  4. S. Manohar, T. G. van Leeuwen, J. M. Klaase, F. M. van den Engh, and W. Steenbergen, “Photoacoustic mammography with a flat detection geometry,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 431–442.
  5. A. A. Oraevsky, “Optoacoustic tomography of the breast,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 411–429.
  6. S. Sethuraman, B. Wang, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of atherosclerosis,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 451–461.
  7. G. J. Diebold, “Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimensions,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 3–17.
  8. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  9. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt.36(1), 402–415 (1997).
    [CrossRef] [PubMed]
  10. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am.93(3), 1609–1612 (1993).
    [CrossRef]
  11. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Classic Texts in the Physical Sciences) (Oxford University, 2005).
  12. L. G. Hepler, “Thermal expansion and structure in water and aqueous solutions,” Can. J. Chem.47(24), 4613–4617 (1969).
    [CrossRef]
  13. L. Talley, G. Pickard, W. Emery, and J. Swift, “Physical properties of seawater,” in Descriptive Physical Oceanography (Elsevier Ltd., 2011), pp. 29–65.
  14. R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970).
    [CrossRef]
  15. Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC, 1992).
  16. F. W. Kremkau, Diagnostic Ultrasound Principles and Exercises. (Harcourt Health Sciences Group, 1980).
  17. B. Wang and S. Emelianov, “Thermal intravascular photoacoustic imaging,” Biomed. Opt. Express2(11), 3072–3078 (2011).
    [CrossRef] [PubMed]
  18. L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
    [CrossRef] [PubMed]
  19. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
    [CrossRef]
  20. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
    [CrossRef] [PubMed]
  21. S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012).
    [CrossRef] [PubMed]
  22. B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010).
    [CrossRef] [PubMed]
  23. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
    [CrossRef] [PubMed]
  24. A. A. Anosov and L. R. Gavrilov, “Reconstruction of the in-depth temperature distribution for biological objects by liner phased arrays,” Acoust. Phys.51(4), 376–384 (2005).
    [CrossRef]
  25. A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
    [CrossRef] [PubMed]
  26. G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
    [CrossRef] [PubMed]
  27. W. Bost, R. Lemor, and M. Fournelle, “Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents,” Appl. Opt.51(33), 8041–8046 (2012).
    [CrossRef] [PubMed]
  28. C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
    [CrossRef] [PubMed]
  29. S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt.48(7), C38–C45 (2009).
    [CrossRef] [PubMed]
  30. D.-K. Yao and L. V. Wang, “Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry,” Proc. SPIE8581, 858138 (2013).
    [CrossRef]
  31. N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
    [CrossRef]
  32. A. Korobov, N. Odina, V. Chegnov, M. Chukichev, B. Enflo, C. M. Hedberg, and L. Kari, “Experimental research of Gruneisen parameter of fullerite C60 single crystal near structural phase transition at 260 K using photoacoustic technique,” in Nonlinear Acoustics—Fundamentals and Applications (ISNA 18), B. O. Enflo, C. M. Hedberg, and L. Kari, eds. (2008), p. CP1022.
    [CrossRef]
  33. J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
    [CrossRef]
  34. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
    [CrossRef] [PubMed]
  35. V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
    [CrossRef]
  36. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32(4), 399–410 (1993).
    [CrossRef] [PubMed]
  37. L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt.40(19), 3196–3204 (2001).
    [CrossRef] [PubMed]
  38. A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
    [CrossRef] [PubMed]
  39. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
    [CrossRef] [PubMed]
  40. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express2(11), 3193–3206 (2011).
    [CrossRef] [PubMed]
  41. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
    [CrossRef] [PubMed]
  42. J. M. Steinke and A. P. Shepherd, “Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin,” Clin. Chem.38(7), 1360–1364 (1992).
    [PubMed]
  43. L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
    [CrossRef] [PubMed]
  44. D. Theodorescu, “Cancer cryotherapy: evolution and biology,” Rev. Urol.6(Suppl 4), S9–S19 (2004).
    [PubMed]
  45. B. Rubinsky, “Cryosurgery,” Annu. Rev. Biomed. Eng.2(1), 157–187 (2000).
    [CrossRef] [PubMed]
  46. S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
    [CrossRef] [PubMed]
  47. N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
    [CrossRef] [PubMed]
  48. G. Onik, “Image-guided prostate cryosurgery: state of the art,” Cancer Contr.8(6), 522–531 (2001).
    [PubMed]
  49. I. Y. Petrov, Y. Petrov, D. S. Prough, I. Cicenaite, D. J. Deyo, and R. O. Esenaliev, “Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals,” Opt. Express20(4), 4159–4167 (2012).
    [CrossRef] [PubMed]
  50. T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
    [CrossRef] [PubMed]
  51. T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt.16(8), 080502 (2011).
    [CrossRef] [PubMed]
  52. M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
    [CrossRef] [PubMed]

2013 (4)

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
[CrossRef] [PubMed]

D.-K. Yao and L. V. Wang, “Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry,” Proc. SPIE8581, 858138 (2013).
[CrossRef]

2012 (9)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
[CrossRef] [PubMed]

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012).
[CrossRef] [PubMed]

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

I. Y. Petrov, Y. Petrov, D. S. Prough, I. Cicenaite, D. J. Deyo, and R. O. Esenaliev, “Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals,” Opt. Express20(4), 4159–4167 (2012).
[CrossRef] [PubMed]

W. Bost, R. Lemor, and M. Fournelle, “Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents,” Appl. Opt.51(33), 8041–8046 (2012).
[CrossRef] [PubMed]

2011 (5)

B. Wang and S. Emelianov, “Thermal intravascular photoacoustic imaging,” Biomed. Opt. Express2(11), 3072–3078 (2011).
[CrossRef] [PubMed]

J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express2(11), 3193–3206 (2011).
[CrossRef] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt.16(8), 080502 (2011).
[CrossRef] [PubMed]

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

2010 (3)

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010).
[CrossRef] [PubMed]

2009 (3)

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt.48(7), C38–C45 (2009).
[CrossRef] [PubMed]

2008 (2)

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

2005 (3)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

A. A. Anosov and L. R. Gavrilov, “Reconstruction of the in-depth temperature distribution for biological objects by liner phased arrays,” Acoust. Phys.51(4), 376–384 (2005).
[CrossRef]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
[CrossRef] [PubMed]

2004 (2)

M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
[CrossRef] [PubMed]

D. Theodorescu, “Cancer cryotherapy: evolution and biology,” Rev. Urol.6(Suppl 4), S9–S19 (2004).
[PubMed]

2001 (2)

2000 (1)

B. Rubinsky, “Cryosurgery,” Annu. Rev. Biomed. Eng.2(1), 157–187 (2000).
[CrossRef] [PubMed]

1997 (1)

1993 (2)

1992 (1)

J. M. Steinke and A. P. Shepherd, “Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin,” Clin. Chem.38(7), 1360–1364 (1992).
[PubMed]

1986 (1)

L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
[CrossRef] [PubMed]

1970 (1)

R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970).
[CrossRef]

1969 (1)

L. G. Hepler, “Thermal expansion and structure in water and aqueous solutions,” Can. J. Chem.47(24), 4613–4617 (1969).
[CrossRef]

Ageeva, T. V.

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Anosov, A. A.

A. A. Anosov and L. R. Gavrilov, “Reconstruction of the in-depth temperature distribution for biological objects by liner phased arrays,” Acoust. Phys.51(4), 376–384 (2005).
[CrossRef]

Arridge, S. R.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
[CrossRef] [PubMed]

Bao, C.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Beard, P. C.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
[CrossRef] [PubMed]

Beek, J. F.

Beziere, N.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Bilaniuk, N.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am.93(3), 1609–1612 (1993).
[CrossRef]

Blute, M. L.

M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
[CrossRef] [PubMed]

Bost, W.

Bouchard, R. R.

Brecht, H. P.

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

Chumakova, O. V.

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

Cicenaite, I.

Clingman, B.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Conjusteau, A.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

Cook, J. R.

Cordone, L.

L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
[CrossRef] [PubMed]

Cox, B.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
[CrossRef] [PubMed]

Cox, R. A.

R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970).
[CrossRef]

Cui, D.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Culkin, F.

R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970).
[CrossRef]

Cupane, A.

L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
[CrossRef] [PubMed]

de la Fuente, J. M.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

del Pino, P.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Deyo, D. J.

Dornbluth, N. K.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Egerev, S.

Emelianov, S.

Emelianov, S. Y.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express2(11), 3193–3206 (2011).
[CrossRef] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Ermilov, S.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt.48(7), C38–C45 (2009).
[CrossRef] [PubMed]

Ermilov, S. A.

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

Erpelding, T. N.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Esenaliev, R. O.

Estrada, G.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Fokin, A.

Fournelle, M.

Frazier, N.

N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
[CrossRef] [PubMed]

Fronheiser, M. P.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

Gao, L.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

Gavrilov, L. R.

A. A. Anosov and L. R. Gavrilov, “Reconstruction of the in-depth temperature distribution for biological objects by liner phased arrays,” Acoust. Phys.51(4), 376–384 (2005).
[CrossRef]

Gettman, M. T.

M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
[CrossRef] [PubMed]

Ghandehari, H.

N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
[CrossRef] [PubMed]

Gillett, M. D.

M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
[CrossRef] [PubMed]

Gormley, A.

N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
[CrossRef] [PubMed]

Gu, X.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Guo, Z.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Guzatov, D.

Hanssen, L.

Harrison, T.

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt.16(8), 080502 (2011).
[CrossRef] [PubMed]

Heijblom, M.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

Hepler, L. G.

L. G. Hepler, “Thermal expansion and structure in water and aqueous solutions,” Can. J. Chem.47(24), 4613–4617 (1969).
[CrossRef]

Herzog, D.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Hu, J. C.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Jacques, S. L.

Jankovic, L.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Kanavin, A.

Ke, H.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

Khokhlova, T. D.

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012).
[CrossRef] [PubMed]

Kim, C.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Kist, K.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Klimov, V.

Knysh, A. N.

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

Kolios, M. C.

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010).
[CrossRef] [PubMed]

Korobov, A. I.

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

Kowalczyk, K. J.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Larin, K. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Larina, I. V.

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Larson, N.

N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
[CrossRef] [PubMed]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Laufer, J. G.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
[CrossRef] [PubMed]

Lei, Y.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Lemor, R.

Leone, M.

L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
[CrossRef] [PubMed]

Li, C.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

Liopo, A. V.

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

Lipsitz, S. R.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Liu, Y.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

Luke, G. P.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Manohar, S.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

Margenthaler, J. A.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Maslov, K.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

McCartney, M. J.

R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970).
[CrossRef]

McCorvey, B. M.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Mehta, K.

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

Miller, T.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Nadvoretskiy, V.

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

Nadvoretsky, V.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Nguyen, P. L.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Nikitin, S. M.

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012).
[CrossRef] [PubMed]

Ntziachristos, V.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Odina, N. I.

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

Onik, G.

G. Onik, “Image-guided prostate cryosurgery: state of the art,” Cancer Contr.8(6), 522–531 (2001).
[PubMed]

Oraevsky, A.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

Oraevsky, A. A.

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt.48(7), C38–C45 (2009).
[CrossRef] [PubMed]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt.36(1), 402–415 (1997).
[CrossRef] [PubMed]

Otto, P.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Ovchinnikov, O.

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Pashley, M. D.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Pelaz, B.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Pelivanov, I. M.

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012).
[CrossRef] [PubMed]

Petrov, I. Y.

Petrov, Y.

Pickering, J. W.

Piras, D.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

Prahl, S. A.

Pramanik, M.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

Prough, D. S.

Rubinsky, B.

B. Rubinsky, “Cryosurgery,” Annu. Rev. Biomed. Eng.2(1), 157–187 (2000).
[CrossRef] [PubMed]

Semenov, D. N.

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Shepherd, A. P.

J. M. Steinke and A. P. Shepherd, “Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin,” Clin. Chem.38(7), 1360–1364 (1992).
[PubMed]

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

Soroushian, B.

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010).
[CrossRef] [PubMed]

Spirou, G. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
[CrossRef] [PubMed]

Steenbergen, W.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

Steinke, J. M.

J. M. Steinke and A. P. Shepherd, “Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin,” Clin. Chem.38(7), 1360–1364 (1992).
[PubMed]

Sterenborg, H. J.

Su, R.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

Theodorescu, D.

D. Theodorescu, “Cancer cryotherapy: evolution and biology,” Rev. Urol.6(Suppl 4), S9–S19 (2004).
[PubMed]

Tian, F.

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Tittel, F. K.

Tsyboulski, D.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

van Gemert, M. J. C.

van Leeuwen, T. G.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

van Wieringen, N.

Vitkin, I. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
[CrossRef] [PubMed]

Vitrano, E.

L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
[CrossRef] [PubMed]

Wang, B.

Wang, L.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

Wang, L. V.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

D.-K. Yao and L. V. Wang, “Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry,” Proc. SPIE8581, 858138 (2013).
[CrossRef]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

Whelan, W. M.

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010).
[CrossRef] [PubMed]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
[CrossRef] [PubMed]

Williams, S. B.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Wong, G. S. K.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am.93(3), 1609–1612 (1993).
[CrossRef]

Xia, W.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

Yao, D.-K.

D.-K. Yao and L. V. Wang, “Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry,” Proc. SPIE8581, 858138 (2013).
[CrossRef]

Yeager, D.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

Yu, H.-Y.

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Zalev, J.

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

Zemp, R. J.

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt.16(8), 080502 (2011).
[CrossRef] [PubMed]

Zhang, C.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

Zincke, H.

M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
[CrossRef] [PubMed]

Acoust. Phys. (1)

A. A. Anosov and L. R. Gavrilov, “Reconstruction of the in-depth temperature distribution for biological objects by liner phased arrays,” Acoust. Phys.51(4), 376–384 (2005).
[CrossRef]

Ann. Biomed. Eng. (1)

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

B. Rubinsky, “Cryosurgery,” Annu. Rev. Biomed. Eng.2(1), 157–187 (2000).
[CrossRef] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (2)

Biophys. Chem. (1)

L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986).
[CrossRef] [PubMed]

BJU Int. (1)

S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012).
[CrossRef] [PubMed]

Can. J. Chem. (1)

L. G. Hepler, “Thermal expansion and structure in water and aqueous solutions,” Can. J. Chem.47(24), 4613–4617 (1969).
[CrossRef]

Cancer Contr. (1)

G. Onik, “Image-guided prostate cryosurgery: state of the art,” Cancer Contr.8(6), 522–531 (2001).
[PubMed]

Clin. Chem. (1)

J. M. Steinke and A. P. Shepherd, “Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin,” Clin. Chem.38(7), 1360–1364 (1992).
[PubMed]

Instrum. Exp. Tech. (1)

N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008).
[CrossRef]

J. Acoust. Soc. Am. (1)

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am.93(3), 1609–1612 (1993).
[CrossRef]

J. Biomed. Opt. (9)

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012).
[CrossRef] [PubMed]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008).
[CrossRef] [PubMed]

S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012).
[CrossRef] [PubMed]

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010).
[CrossRef] [PubMed]

M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009).
[CrossRef] [PubMed]

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013).
[CrossRef] [PubMed]

M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010).
[CrossRef] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011).
[CrossRef] [PubMed]

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt.16(8), 080502 (2011).
[CrossRef] [PubMed]

J. Control. Release (1)

N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (1)

I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005).
[CrossRef]

Mayo Clin. Proc. (1)

M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004).
[CrossRef] [PubMed]

Nanosci Nanotechnol Lett (1)

A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012).
[CrossRef] [PubMed]

Oceanogr. Abstr. (1)

R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (1)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005).
[CrossRef] [PubMed]

Proc. SPIE (3)

D.-K. Yao and L. V. Wang, “Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry,” Proc. SPIE8581, 858138 (2013).
[CrossRef]

J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012).
[CrossRef]

V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011).
[CrossRef]

Radiology (1)

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009).
[CrossRef] [PubMed]

Rev. Urol. (1)

D. Theodorescu, “Cancer cryotherapy: evolution and biology,” Rev. Urol.6(Suppl 4), S9–S19 (2004).
[PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Small (1)

C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013).
[CrossRef] [PubMed]

Other (11)

A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), pp. 34/31–34/34.

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Classic Texts in the Physical Sciences) (Oxford University, 2005).

S. Manohar, T. G. van Leeuwen, J. M. Klaase, F. M. van den Engh, and W. Steenbergen, “Photoacoustic mammography with a flat detection geometry,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 431–442.

A. A. Oraevsky, “Optoacoustic tomography of the breast,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 411–429.

S. Sethuraman, B. Wang, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of atherosclerosis,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 451–461.

G. J. Diebold, “Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimensions,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 3–17.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC, 1992).

F. W. Kremkau, Diagnostic Ultrasound Principles and Exercises. (Harcourt Health Sciences Group, 1980).

L. Talley, G. Pickard, W. Emery, and J. Swift, “Physical properties of seawater,” in Descriptive Physical Oceanography (Elsevier Ltd., 2011), pp. 29–65.

A. Korobov, N. Odina, V. Chegnov, M. Chukichev, B. Enflo, C. M. Hedberg, and L. Kari, “Experimental research of Gruneisen parameter of fullerite C60 single crystal near structural phase transition at 260 K using photoacoustic technique,” in Nonlinear Acoustics—Fundamentals and Applications (ISNA 18), B. O. Enflo, C. M. Hedberg, and L. Kari, eds. (2008), p. CP1022.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematics of the experimental setup. (b) Photograph showing the optoacoustic probe (1), the light bars (2) and the tubes filled with samples (3) integrated via a rigid acrylic bracket. The ruler shown in front of the bracket is 15 cm long.

Fig. 2
Fig. 2

(a) 20 × 20 mm2 two dimensional optoacoustic image showing 4 sample tubes filled with aqueous solutions of CuSO4⋅5H2O: top left – 12 mM, top right and lower left – 60 mM, lower right – 120 mM. Linear grayscale palette is extended over the full dynamic range. The top pair of tubes is located 17 mm from the transducer array, the second pair – about 25 mm. Square indicates a 5 × 5 mm2 area around the top left sample, which is magnified and presented on subsequent panels. Arrow indicates direction of illumination and location of the central probe element. (b-d) 2D optoacoustic images of a tube with 12 mM aqueous solution of CuSO4⋅5H2O. Images were acquired at temperatures indicated on each panel. Tube has an inner diameter of 0.635 mm and wall thickness of 0.051 mm. The selected ROI is a 0.4 mm diameter dashed circle. For direct visual comparison the images are shown in gray palette linearly scaled over the full dynamic range of the frame acquired at 12°C. The colorbar with the corresponding dynamic range is shown on panel (c). Data displayed on the panel (b) has full dynamic range [-0.040 ÷ 0.040] and the image colors are saturated for pixels with intensities below −0.020 and above 0.020. Data on panel (d) has full dynamic range [-0.006 ÷ 0.006] and, therefore, is mapped to the gray portion of the image palette. Speed of sound for background water bath is varied in reconstruction according to the temperature: (b) 1485 m/s; (c) 1455 m/s; (d) 1430 m/s. Top right corner insets on Panels (c) and (d) illustrate distorted images resulting from an optoacoustic reconstruction assuming constant speed of sound of 1485 m/s. Top right corner inset on Panel (b) shows a portion of the optoacoustic signal corresponding to the closest pair of tubes as it is registered by the central channel.

Fig. 3
Fig. 3

Analysis of optoacoustic images for two 60 mM CuSO4⋅5H2O samples experiencing different local optical fluence and distortion of propagating optoacoustic waves. (a) Temporal profiles of the measured median optoacoustic intensity during cooling of the samples from 22 to 4°C. Temporal profile of the corresponding temperature change is depicted on the inset. (b) Optoacoustic intensity normalized to 20°C as a function of temperature.

Fig. 4
Fig. 4

(a) Optical absorption spectra of aqueous solution of CuSO4⋅5H2O (60 mM) measured at different temperatures (5 top curves). Optical absorption spectra of distilled water are shown at 26°C and 58°C as the two lower profiles. All the spectra were measured with a reference to distilled water at 22°C. (b) Optical absorbance at 800 nm as a function of temperature for three concentrations of CuSO4⋅5H2O. The estimated extinction coefficient at 0°C is ε0 = 9.38 ± 0.24 M−1cm−1, which is about 11% decrease from its value at room temperature.

Fig. 5
Fig. 5

(a) Normalized optoacoustic intensity as a function of temperature for different concentrations of CuSO4⋅5H2O. Grüneisen parameter of water (ΓH2O) was calculated for each degree and presented after normalization at Tn = 20°C. (b) Scatter plot and its linear fit for the parameter T0 as a function of concentration estimated from the data slope (opened squares) and intercept (solid circles).

Fig. 6
Fig. 6

Residuals of the linear regression models that were used to fit normalized optoacoustic intensity (solid squares) and normalized optoacoustic signals from channel number 96 (opened circles) showing the precision of the Grüneisen estimation using both techniques. Imaging: Residual sum of squares (RSS) – 0.3, R-Square – 0.998, adjusted R-Square – 0.996; Sensing: RSS - 11.7, R-Square – 0.924, adjusted R-Square – 0.854.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σξΓ μ a F,
Γ= β V l 2 C p .
I ¯ n (T)= I(T) I( T n ) = Γ(T) Γ( T n ) .
Γ(c,T)= Γ T (c)(T T 0 (c)),
I ¯ n (c,T)= T T 0 (c) T n T 0 (c) = a 0 (c)+ a 1 (c)T.
T 0 (c)= T n 1 a 1 (c) ,
T 0 (c)= a 0 (c) T n a 0 (c)1 .

Metrics