Abstract

For the fabrication of nanoparticle containing optical fibers by melt and draw technique, nanoparticle stability at high temperatures is a requirement. We report the synthesis of quantum dots at temperatures as high as 1000 °C, compatible with fiber drawing, stabilized for the first time by a prior low temperature heating step. It is observed that quantum dots formed by this two step heating leads to a better emission stability at high powers associated with a reversible phenomenon, making these nanomaterials suitable for further technological applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
    [CrossRef] [PubMed]
  2. A. I. Ekimov and A. L. Efros, “Nonlinear optics of semiconductor-doped glasses,” Phys. Status Solidi, B Basic Res.150(2), 627–633 (1988).
    [CrossRef]
  3. V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996).
    [CrossRef] [PubMed]
  4. F. Hache, M. C. Klein, D. Ricard, and C. Flytzanis, “Photoluminescence study of Schott commercial and experimental CdSSe-doped glasses: observation of surface states,” J. Opt. Soc. Am. B8(9), 1802–1806 (1991).
    [CrossRef]
  5. A. Bhardwaj, A. Hreibi, L. Chao, J. Heo, J. Auguste, J. Blondy, and F. Gerome, “PbS quantum dots doped glass fibers for optical applications,” in Conference on Lasers and Electro-Optics, 2012 OSA Technical Digest (Optical Society of America, 2012), paper CTh1G.1.
    [CrossRef]
  6. A. Bhardwaj, A. Hreibi, W. W. Yu, C. Liu, J. Heo, J.-L. Auguste, J.-M. Blondy, and F. Gerome, Proceedings of IEEE conference on Transparent Optical Networks (Coventry, United Kingdom, 2–5 July 2012), pp 1–5.
  7. C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007).
    [CrossRef]
  8. L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
    [CrossRef]
  9. J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys.8(33), 3851–3856 (2006).
    [CrossRef] [PubMed]
  10. K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
    [CrossRef]
  11. M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
    [CrossRef]
  12. L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
    [CrossRef]
  13. A. Cao and G. Veser, “Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles,” Nat. Mater.9(1), 75–81 (2010).
    [CrossRef] [PubMed]
  14. S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
    [CrossRef] [PubMed]
  15. M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005).
    [CrossRef] [PubMed]
  16. D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
    [CrossRef]
  17. D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
    [CrossRef]
  18. X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).
  19. P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
    [CrossRef]

2010 (2)

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

A. Cao and G. Veser, “Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles,” Nat. Mater.9(1), 75–81 (2010).
[CrossRef] [PubMed]

2009 (1)

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

2007 (3)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007).
[CrossRef]

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

2006 (2)

J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys.8(33), 3851–3856 (2006).
[CrossRef] [PubMed]

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

2005 (1)

M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005).
[CrossRef] [PubMed]

2004 (1)

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

1999 (1)

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

1997 (1)

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

1996 (2)

P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
[CrossRef]

V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

1988 (1)

A. I. Ekimov and A. L. Efros, “Nonlinear optics of semiconductor-doped glasses,” Phys. Status Solidi, B Basic Res.150(2), 627–633 (1988).
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Ai, X.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Auxier, J.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Barbosa, L. C.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Bolivar, P. H.

V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996).
[CrossRef] [PubMed]

Borrelli, N. F.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Cao, A.

A. Cao and G. Veser, “Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles,” Nat. Mater.9(1), 75–81 (2010).
[CrossRef] [PubMed]

Cesar, C. L.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

Chepic, D. I.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

Cruz, C. H. B.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

Efros, A. L.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

A. I. Ekimov and A. L. Efros, “Nonlinear optics of semiconductor-doped glasses,” Phys. Status Solidi, B Basic Res.150(2), 627–633 (1988).
[CrossRef]

Ekimov, A. I.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

A. I. Ekimov and A. L. Efros, “Nonlinear optics of semiconductor-doped glasses,” Phys. Status Solidi, B Basic Res.150(2), 627–633 (1988).
[CrossRef]

Flytzanis, C.

Gaponenko, M. S.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Ge, C.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Göring, P.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Gösele, U.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Hache, F.

Hawker, C. J.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Henini, M.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

Hennequin, B.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

Heo, J.

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007).
[CrossRef]

Hillebrand, R.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Hopfe, S.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Ivanov, M. G.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Jin, R.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Joo, S. H.

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Kharchenko, V. A.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

Kim, D. H.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Kirchhoff, M.

M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005).
[CrossRef] [PubMed]

Klein, M. C.

Klimov, V.

V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996).
[CrossRef] [PubMed]

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Krauss, T. D.

J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys.8(33), 3851–3856 (2006).
[CrossRef] [PubMed]

Kudriavtsev, I. A.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

Kurz, H.

V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996).
[CrossRef] [PubMed]

Kwon, Y. K.

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007).
[CrossRef]

Liu, C.

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007).
[CrossRef]

Lutich, A. A.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Malyarevich, A. M.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Milenin, A. P.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Neves, A. A. R.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

Onushchenko, A. A.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Padilha, L. A.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

Park, J. Y.

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Patane, A.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

Peterson, J. J.

J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys.8(33), 3851–3856 (2006).
[CrossRef] [PubMed]

Petrov, E. P.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Peyghambarian, N.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Ricard, D.

Risbud, S. H.

P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
[CrossRef]

Rodrigues, P. A. M.

P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
[CrossRef]

Russell, T. P.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Scholz, R.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Schulzgen, A.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Senz, S.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Somorjai, G. A.

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Specht, U.

M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005).
[CrossRef] [PubMed]

Steinhart, M.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Tamulaitis, G.

P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
[CrossRef]

Thomas, N. R.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

Tolstik, N. A.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Tsung, C. K.

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Turyanska, L.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

Veser, G.

A. Cao and G. Veser, “Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles,” Nat. Mater.9(1), 75–81 (2010).
[CrossRef] [PubMed]

M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005).
[CrossRef] [PubMed]

Wang, J.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Wundke, K.

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

Xiao, X.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Yamada, Y.

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Yang, P.

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Yazeva, T. V.

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

Yu, P. Y.

P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
[CrossRef]

Yumashev, K. V.

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Zhou, X.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Zou, Y.

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

Zschech, D.

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007).
[CrossRef]

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007).
[CrossRef]

K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999).
[CrossRef]

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004).
[CrossRef]

J. Appl. Phys. (1)

P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996).
[CrossRef]

J. Chem. Phys. (1)

X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).

J. Lumin. (1)

D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nanotechnology (2)

M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005).
[CrossRef] [PubMed]

D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006).
[CrossRef]

Nat. Mater. (2)

A. Cao and G. Veser, “Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles,” Nat. Mater.9(1), 75–81 (2010).
[CrossRef] [PubMed]

S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009).
[CrossRef] [PubMed]

Nature (1)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys.8(33), 3851–3856 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (1)

M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996).
[CrossRef] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

A. I. Ekimov and A. L. Efros, “Nonlinear optics of semiconductor-doped glasses,” Phys. Status Solidi, B Basic Res.150(2), 627–633 (1988).
[CrossRef]

Other (2)

A. Bhardwaj, A. Hreibi, L. Chao, J. Heo, J. Auguste, J. Blondy, and F. Gerome, “PbS quantum dots doped glass fibers for optical applications,” in Conference on Lasers and Electro-Optics, 2012 OSA Technical Digest (Optical Society of America, 2012), paper CTh1G.1.
[CrossRef]

A. Bhardwaj, A. Hreibi, W. W. Yu, C. Liu, J. Heo, J.-L. Auguste, J.-M. Blondy, and F. Gerome, Proceedings of IEEE conference on Transparent Optical Networks (Coventry, United Kingdom, 2–5 July 2012), pp 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Image of a 10 cm-long silicate glass preform containing precursors for PbS QDs synthesis; (b) Images of the 3mm thick piece of glass, before and after heating at 470 °C for 24, 47 and 53 hr durations; (c) TEM image of the last treated sample.

Fig. 2
Fig. 2

(a) Absorption spectra recorded at various heating times and temperatures, when heated gradually; (b) Corresponding emission spectra under a 532 nm CW-laser pumping for a pump power (Pp) of 70 mW.

Fig. 3
Fig. 3

Emission spectra at pump powers varying from 12 to 576 mW for 3 mm glass samples heat treated at (a) 490 °C - 10 hrs and (b) Stability check by exposing the samples to maximum power (576 mW); Black spectra is due to first exposure and grey due to third exposure to 532 nm laser.

Fig. 4
Fig. 4

Emission spectra recorded at various heating times and temperatures, after a prior heating of each sample at 550 °C - 10 min under a 532 nm CW-laser pumping for a pump power (Pp) of 78 mW.

Fig. 5
Fig. 5

Emission spectra at pump powers varying from 12 to 576 mW for 3 mm glass samples heat treated at (a) 750 °C – 2 min and (b) 1000 °C – 40 sec exposure to 532 nm laser, after an initial heat treatment of 550 °C – 10 min.

Fig. 6
Fig. 6

Stability check by exposing the samples to maximum power twice for samples heat treated at (a) 750 °C – 2 min and (b) 1000 °C – 40 sec, after an initial heat treatment of 550 °C – 10 min.; Black spectra is due to first exposure and grey due to third exposure to 532 nm laser.

Metrics