Abstract

An optical phase modulator based on novel n-i-n InGaAlAs/InAlAs multiple-quantum-barrier (MQBs) is proposed to reduce the waveguide loss and enhance the modulation efficiency. Efficient bias loading with low leakage current is realized by taking advantages of the large conduction band discontinuity in InGaAlAs/InAlAs heterostructure and high electron reflection by MQBs. Low optical transmission loss of 2.3 dB/cm and improved modulation performance with a voltage length product of 1.06 V⋅cm are demonstrated for TE mode at 1550 nm. The linear and quadratic electro-optic coefficients of the fabricated device are estimated to be 1.0 pm/V and 1.4 × 10−19 m2/V2, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006).
    [CrossRef]
  2. M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008).
    [CrossRef]
  3. L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
    [CrossRef]
  4. P. W. Juodawlkis, F. J. O’Donnell, R. J. Bailey, J. J. Plant, K. G. Ray, D. C. Oakley, A. Napoleone, and G. E. Betts, “Sub-volt-Vπ InGaAsP electrorefractive modulators using symmetric, uncoupled quantum wells,” in Proceedings of 16th Annual Meeting of IEEE (Lasers and Electro-Optics Society, Tucson, 2003), pp. 788–789.
  5. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
    [CrossRef]
  6. T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
    [CrossRef]
  7. N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
    [CrossRef]
  8. I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
    [CrossRef]
  9. T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991).
    [CrossRef]
  10. N. Dagli, High-speed photonics device (Taylor & Francis, 2007), Chap. 4.
  11. K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986).
    [CrossRef]
  12. E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AIGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
    [CrossRef]
  13. P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
    [CrossRef]
  14. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron.27(3), 626–640 (1991).
    [CrossRef]
  15. T. H. Stievater, D. Park, W. S. Rabinovich, M. W. Pruessner, S. Kanakaraju, C. J. Richardson, and J. B. Khurgin, “Enhanced electro-optic phase shifts in suspended waveguides,” Opt. Express18(2), 885–892 (2010).
    [CrossRef] [PubMed]
  16. J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
    [CrossRef]
  17. C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
    [CrossRef]
  18. S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991).
    [CrossRef]
  19. E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
    [CrossRef]
  20. S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
    [CrossRef]
  21. S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-VCH, 1992).

2010

2009

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

2008

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008).
[CrossRef]

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

2006

2004

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

2003

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

2000

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

1995

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
[CrossRef]

1992

S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
[CrossRef]

1991

S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991).
[CrossRef]

T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991).
[CrossRef]

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron.27(3), 626–640 (1991).
[CrossRef]

1988

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

1987

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AIGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

1986

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986).
[CrossRef]

I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
[CrossRef]

Adamiecki, A.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Alping, A.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Arai, M.

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Bhat, R.

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AIGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Chandrasekhar, S.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Cocorullo, C.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
[CrossRef]

Coldren, L.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Deri, R. J.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron.27(3), 626–640 (1991).
[CrossRef]

Essiambre, R.-J.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Hase, I.

I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
[CrossRef]

Hausken, T.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Henning, I. D.

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

Iga, K.

T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991).
[CrossRef]

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986).
[CrossRef]

Iga, R.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Inoue, H.

S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
[CrossRef]

Iodice, M.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
[CrossRef]

Ishibashi, T.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Ishida, K.

S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
[CrossRef]

Ishikawa, M.

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

Ito, T.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Jarrahi, M.

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008).
[CrossRef]

Kanakaraju, S.

Kaneko, K.

I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
[CrossRef]

Kapon, E.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron.27(3), 626–640 (1991).
[CrossRef]

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AIGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

Kawaguchi, Y.

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

Kawai, H.

I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
[CrossRef]

Khurgin, J. B.

Kikuchi, N.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Kondo, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Koyama, F.

T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991).
[CrossRef]

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Lee, K.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Lee, S. S.

S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991).
[CrossRef]

Lee, T. H.

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008).
[CrossRef]

Maack, D. M.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

McIlroy, P. W. A.

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

Mendoza-Alvarez, J.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Miller, D. A. B.

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Nishimura, S.

S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
[CrossRef]

Oku, S.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Park, D.

Pedrotti, K.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Ramaswamy, R. V.

S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991).
[CrossRef]

Rendina, I.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
[CrossRef]

Richardson, C. J.

Rodgers, P. M.

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

Sanjoh, H.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

Sano, H.

S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
[CrossRef]

Sarro, P. M.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
[CrossRef]

Sato, T.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

Sauer, N.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Shibata, Y.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Singh, J. S.

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

Sinsky, J.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Spurdens, P. C.

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

Stievater, T. H.

Stulz, L.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Sundaram, V. S.

S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991).
[CrossRef]

Takagi, T.

T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991).
[CrossRef]

Tohmori, Y.

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Tsuzuki, K.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

Uenohara, H.

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986).
[CrossRef]

Van Thourhout, D.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Watanabe, N.

I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
[CrossRef]

Winzer, P. J.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Yamada, E.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

Yan, A. Y.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Yan, R.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

Yasaka, H.

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

Yasui, T.

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

Zhang, L.

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

Appl. Phys. Lett.

T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991).
[CrossRef]

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AIGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

Electron. Lett.

P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987).
[CrossRef]

K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986).
[CrossRef]

K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003).
[CrossRef]

IEEE J. Quantum Electron.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron.27(3), 626–640 (1991).
[CrossRef]

S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992).
[CrossRef]

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995).
[CrossRef]

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008).
[CrossRef]

N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009).
[CrossRef]

M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008).
[CrossRef]

L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004).
[CrossRef]

J. Appl. Phys.

I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986).
[CrossRef]

J. Lightwave Technol.

J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988).
[CrossRef]

P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006).
[CrossRef]

Opt. Express

Other

P. W. Juodawlkis, F. J. O’Donnell, R. J. Bailey, J. J. Plant, K. G. Ray, D. C. Oakley, A. Napoleone, and G. E. Betts, “Sub-volt-Vπ InGaAsP electrorefractive modulators using symmetric, uncoupled quantum wells,” in Proceedings of 16th Annual Meeting of IEEE (Lasers and Electro-Optics Society, Tucson, 2003), pp. 788–789.

N. Dagli, High-speed photonics device (Taylor & Francis, 2007), Chap. 4.

S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-VCH, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Band diagrams of (a) InGaAsP/InP (b) InAlAs/InP and (c) InGaAlAs/InAlAs MQB based n-i-n heterostructures.

Fig. 2
Fig. 2

Leakage current density of n-i-n heterostructures.

Fig. 3
Fig. 3

Microwave transmission behavior of traveling-wave electrodes on the novel n-i-n waveguide.

Fig. 4
Fig. 4

Cross-sectional view of the MQB n-i-n heterostructure waveguide.

Fig. 5
Fig. 5

Experimental setup for optical loss and electro-optic phase shift measurements with n-i-n heterostructure phase modulators.

Fig. 6
Fig. 6

The current-voltage characteristic of the MQB n-i-n heterostructure phase modulator.

Fig. 7
Fig. 7

FP method for measuring propagation loss in the MQB n-i-n heterostructure waveguides. The lines are linear fits to the data.

Fig. 8
Fig. 8

Measured phase shift vs. bias voltage for (a) TE and (b) TM polarized light at 1550nm in a 1930-μm-long phase modulator.

Fig. 9
Fig. 9

Measured FP phase shift vs. bias voltage for the TE mode for 1525nm, 1550nm and 1600nm in a 630μm long waveguide.

Fig. 10
Fig. 10

Measured electro-optic tensor coefficients for different samples at 1550 nm.

Fig. 11
Fig. 11

Calculated linear and quadratic electro-optic effects at different wavelengths for TE mode from the estimated electro-optic tensor coefficients.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ln(1 1 K 2 )lnK=lnRαL
K=( T max T min )/( T max + T min )
Δϕ(V)= 1 2 arccos(1 2( T max (V)T(V)) T min (V) ( T max (V) T min (V))T(V) )
Δϕ=2πLΔn/λ
Δ n forwardTE [110] = 1 2 n eff 3 r 41 (E(x) E 0 (x)) ψ TE 2 (x)dx 1 2 n eff 3 R 12 ( E 2 (x) E 0 2 (x)) ψ TE 2 (x)dx
Δ n reverseTE [110] = 1 2 n eff 3 r 41 (E(x) E 0 (x)) ψ TE 2 (x)dx 1 2 n eff 3 R 12 ( E 2 (x) E 0 2 (x)) ψ TE 2 (x)dx
Δ n forwardTM [110] =Δ n reverseTM [110] = 1 2 n eff 3 R 11 1 2 n eff 3 r 41 ( E 2 (x) E 0 2 (x)) ψ TM 2 (x)dx

Metrics