Abstract

An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
    [CrossRef]
  2. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
    [CrossRef]
  3. F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
    [CrossRef] [PubMed]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
    [CrossRef] [PubMed]
  5. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
    [CrossRef] [PubMed]
  6. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012).
    [CrossRef]
  7. J. Perruisseau-Carrier, “Graphene for antenna applications: Opportunities and challenges from microwaves to THz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).
  8. E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013).
    [CrossRef]
  9. J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21, 15490 (2013).
    [CrossRef] [PubMed]
  10. L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
    [CrossRef] [PubMed]
  11. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
    [CrossRef] [PubMed]
  12. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
    [CrossRef] [PubMed]
  13. M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
    [CrossRef]
  14. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
    [CrossRef]
  15. J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
    [CrossRef]
  16. A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
    [CrossRef]
  17. Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
    [CrossRef]
  18. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216, 396 (1968).
  19. K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003).
    [CrossRef]
  20. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012).
    [CrossRef] [PubMed]
  21. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag.AP-7, 201–208 (1959).
    [CrossRef]
  22. A. M. Patel and A. Grbic, “A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface,” IEEE Trans. Antennas Propag.59, 2087–2096 (2011).
    [CrossRef]
  23. G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
    [CrossRef]
  24. M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Periodically-modulated graphene leaky-wave antenna for electronic beamscanning at THz,” arXiv:1305.4774 [cond-mat.mes-hall] (2013).
  25. N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
    [CrossRef]
  26. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
    [CrossRef] [PubMed]
  27. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
    [PubMed]
  28. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
    [PubMed]
  29. Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
    [CrossRef] [PubMed]
  30. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
    [CrossRef]
  31. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, Ed., New York (McGraw-Hill, 2007).
  32. D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
    [CrossRef]
  33. P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013).
    [CrossRef]
  34. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50, 910–928 (2002).
    [CrossRef]
  35. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
    [CrossRef]
  36. D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).
  37. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14, 13030–13042 (2006).
    [CrossRef] [PubMed]
  38. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
    [CrossRef]
  39. J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).
  40. Ansoft Corporation, “High Frequency Structure Simulator (HFSS),” v.14. (2012).
  41. G. P. Williams, “Filling the THz gap-high power sources and applications,” Rep. Prog. Phys.69, 301–326 (2005).
    [CrossRef]
  42. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE95, 1658–1665 (2007).
    [CrossRef]
  43. R. J. Pryputniewicz, “MEMS summitv technology,” Worcester Polytechnic Institute, Worcester MA (2002).
  44. M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
    [CrossRef] [PubMed]
  45. R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011).
    [CrossRef] [PubMed]
  46. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
    [CrossRef]
  47. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
    [CrossRef]
  48. R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
    [CrossRef] [PubMed]
  49. I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
    [CrossRef] [PubMed]
  50. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
    [CrossRef]
  51. V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009).
    [CrossRef]
  52. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJ B56, 281–284 (2007).
    [CrossRef]
  53. S. Duttaa and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” J. Mater. Chem.20, 82078223 (2010).
    [CrossRef]
  54. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
    [CrossRef]
  55. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
    [CrossRef]
  56. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
    [CrossRef] [PubMed]
  57. A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
    [CrossRef]
  58. G. W. Hanson, “Dyadic green’s functions for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag.56, 747–757 (2008).
    [CrossRef]
  59. Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting, San Francisco, USA (2008).
  60. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
    [CrossRef]

2013 (7)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
[CrossRef]

N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
[CrossRef]

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013).
[CrossRef]

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
[CrossRef]

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013).
[CrossRef]

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21, 15490 (2013).
[CrossRef] [PubMed]

2012 (11)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012).
[CrossRef]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Ansoft Corporation, “High Frequency Structure Simulator (HFSS),” v.14. (2012).

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012).
[CrossRef] [PubMed]

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

2011 (10)

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

A. M. Patel and A. Grbic, “A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface,” IEEE Trans. Antennas Propag.59, 2087–2096 (2011).
[CrossRef]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
[CrossRef]

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011).
[CrossRef] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

2010 (4)

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

S. Duttaa and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” J. Mater. Chem.20, 82078223 (2010).
[CrossRef]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

2009 (4)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009).
[CrossRef]

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

2008 (5)

G. W. Hanson, “Dyadic green’s functions for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag.56, 747–757 (2008).
[CrossRef]

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

2007 (5)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE95, 1658–1665 (2007).
[CrossRef]

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
[CrossRef] [PubMed]

J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJ B56, 281–284 (2007).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

2006 (1)

2005 (2)

G. P. Williams, “Filling the THz gap-high power sources and applications,” Rep. Prog. Phys.69, 301–326 (2005).
[CrossRef]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

2003 (1)

K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003).
[CrossRef]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50, 910–928 (2002).
[CrossRef]

1968 (1)

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216, 396 (1968).

1959 (1)

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag.AP-7, 201–208 (1959).
[CrossRef]

Aliev, A. E.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Alonso-Gonzalez, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Alu, A.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013).
[CrossRef]

Alvarez-Melcon, A.

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).

Álvarez-Melcón, A.

J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Appenzeller, J.

Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting, San Francisco, USA (2008).

Araneo, R.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
[CrossRef]

Argyropoulos, C.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013).
[CrossRef]

Asgari, R.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

Avouris, P.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Balandin, A. A.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Barlas, Y.

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Beams, R.

R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011).
[CrossRef] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Berini, P.

Bludov, Y. V.

Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
[CrossRef]

Bludox, Y. V.

N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
[CrossRef]

Bolotin, K.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Borghi, G.

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

Bosiljevac, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

Bostwick, A.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Burghignoli, P.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
[CrossRef]

Burghihgnoli, P.

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

Calizo, I.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Camara, N.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Caminita, F.

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
[CrossRef]

Cancado, L. G.

R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Capolino, F.

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

Carbotte, J. B.

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009).
[CrossRef]

Carrasco, E.

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013).
[CrossRef]

Casaletti, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
[CrossRef]

Castro-Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

Chen, P. Y.

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013).
[CrossRef]

Chen, Z.

Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting, San Francisco, USA (2008).

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Colburn, J. S.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

Correas-Serrano, D.

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Davoyan, A. R.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012).
[CrossRef] [PubMed]

de Abajo, F. J. G.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Dimitrakopoulos, C.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Duttaa, S.

S. Duttaa and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” J. Mater. Chem.20, 82078223 (2010).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Esquius-Morote, M.

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Periodically-modulated graphene leaky-wave antenna for electronic beamscanning at THz,” arXiv:1305.4774 [cond-mat.mes-hall] (2013).

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJ B56, 281–284 (2007).
[CrossRef]

Fan, S.

K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003).
[CrossRef]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

Farmer, D. B.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Ferreira, A.

Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
[CrossRef]

N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Fong, B. H.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Fudenberg, G.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

García-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Geim, A. K.

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Girit, C.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Gomez-Diaz, J. S.

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21, 15490 (2013).
[CrossRef] [PubMed]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Periodically-modulated graphene leaky-wave antenna for electronic beamscanning at THz,” arXiv:1305.4774 [cond-mat.mes-hall] (2013).

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).

Gómez-Tornero, J. L.

J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).

Goussetis, G.

J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).

Grbic, A.

A. M. Patel and A. Grbic, “A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface,” IEEE Trans. Antennas Propag.59, 2087–2096 (2011).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Grill, A.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009).
[CrossRef]

Han, M.

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
[CrossRef] [PubMed]

Han, S. J.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Hanson, G. W.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
[CrossRef]

G. W. Hanson, “Dyadic green’s functions for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag.56, 747–757 (2008).
[CrossRef]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

Hao, Z.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Hessel, A.

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag.AP-7, 201–208 (1959).
[CrossRef]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Horn, J.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Horn, K.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Huth, F.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Jackson, D.

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

Jackson, D. R.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, Ed., New York (McGraw-Hill, 2007).

Jenkins, K. A.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Jiang, Z.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Joannopoulos, K. D.

K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003).
[CrossRef]

Ju, L.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Khanikaev, A. B.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Kholmanov, I. N.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
[CrossRef] [PubMed]

Kima, P.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Klima, M.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Koppens, F. H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

L. M.,

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Li, H.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Li, X.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Lin, Y. M.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Liu, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

Lovat, G.

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
[CrossRef]

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

Ma, M. R.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

MacDonald, A. H.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

Maci, S.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
[CrossRef]

Magnuson, C. W.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Martin, M.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Martín-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Meric, I.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Miao, F.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE95, 1658–1665 (2007).
[CrossRef]

Minatti, G.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
[CrossRef]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Mosig, J. R.

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

Mousavi, S. H.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE95, 1658–1665 (2007).
[CrossRef]

Nelson, K. A.

K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003).
[CrossRef]

Neto, A. H. C.

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

Nika, D. L.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Nikitov, S. A.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012).
[CrossRef] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012).
[CrossRef]

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Novotny, L.

R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Oliner, A.

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag.AP-7, 201–208 (1959).
[CrossRef]

Oliner, A. A.

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, Ed., New York (McGraw-Hill, 2007).

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Otto, A.

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216, 396 (1968).

Ottusch, J. J.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Ozyilmaz, B.

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
[CrossRef] [PubMed]

Patel, A. M.

A. M. Patel and A. Grbic, “A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface,” IEEE Trans. Antennas Propag.59, 2087–2096 (2011).
[CrossRef]

Pati, S. K.

S. Duttaa and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” J. Mater. Chem.20, 82078223 (2010).
[CrossRef]

Peng, E.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Pereg-Barnea, T.

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

Peres, N. M.

Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
[CrossRef]

N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
[CrossRef]

Peres, N. M. R.

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

Perruisseau-Carrier, J.

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21, 15490 (2013).
[CrossRef] [PubMed]

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013).
[CrossRef]

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Periodically-modulated graphene leaky-wave antenna for electronic beamscanning at THz,” arXiv:1305.4774 [cond-mat.mes-hall] (2013).

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).

J. Perruisseau-Carrier, “Graphene for antenna applications: Opportunities and challenges from microwaves to THz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Piner, R.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Pokatilov, E. P.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012).
[CrossRef]

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

Popov, V. V.

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012).
[CrossRef] [PubMed]

Pryputniewicz, R. J.

R. J. Pryputniewicz, “MEMS summitv technology,” Worcester Polytechnic Institute, Worcester MA (2002).

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Rotenberg, E.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Seyller, T.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009).
[CrossRef]

Shen, Y. R.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50, 910–928 (2002).
[CrossRef]

Sievenpiper, D. F.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

Sikes, K.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Speck, F.

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

Stormer, H.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Suk, J. W.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Sun, Y.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Tamagnone, M.

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013).
[CrossRef]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Teweldebrhan, D.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Valdes-Garcia, A.

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJ B56, 281–284 (2007).
[CrossRef]

Vasilevskiy, M. I.

N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
[CrossRef]

Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
[CrossRef]

Visher, J. L.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Wang, F.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Williams, G. P.

G. P. Williams, “Filling the THz gap-high power sources and applications,” Rep. Prog. Phys.69, 301–326 (2005).
[CrossRef]

Wilton, R.

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Xia, F.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

Zhang, B.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Zhang, L. L.

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Zhang, R. B. X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Zhang, Y.

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Zurutuza-Elorza, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

ACS Nano (3)

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008).
[CrossRef]

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013).
[CrossRef]

M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012).
[CrossRef]

EPJ B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJ B56, 281–284 (2007).
[CrossRef]

IEEE Antenn. Wireless Propag. Lett. (1)

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011).
[CrossRef]

IEEE Trans. Antennas Propag. (5)

G. W. Hanson, “Dyadic green’s functions for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag.56, 747–757 (2008).
[CrossRef]

A. M. Patel and A. Grbic, “A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface,” IEEE Trans. Antennas Propag.59, 2087–2096 (2011).
[CrossRef]

G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011).
[CrossRef]

P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013).
[CrossRef]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50, 910–928 (2002).
[CrossRef]

Int. J. Mod. Phys. B (1)

Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013).
[CrossRef]

IRE Trans. Antennas Propag. (1)

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag.AP-7, 201–208 (1959).
[CrossRef]

J Eelectromagnet Wave (1)

J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).

J. Appl. Phys. (2)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012).
[CrossRef]

J. Mater. Chem. (1)

S. Duttaa and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” J. Mater. Chem.20, 82078223 (2010).
[CrossRef]

J. Phys.: Condens. Matter (1)

N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013).
[CrossRef]

Nano Lett. (3)

R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011).
[CrossRef] [PubMed]

I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012).
[CrossRef] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (3)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010).
[CrossRef]

L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011).
[CrossRef] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012).
[CrossRef] [PubMed]

Nature (3)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009).
[CrossRef] [PubMed]

Nature photon. (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012).
[CrossRef]

New J. Phys. (1)

V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (5)

G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013).
[CrossRef]

M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008).
[CrossRef]

K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012).
[CrossRef] [PubMed]

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007).
[CrossRef] [PubMed]

Proc. IEEE (2)

D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011).
[CrossRef]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE95, 1658–1665 (2007).
[CrossRef]

Rep. Prog. Phys. (2)

G. P. Williams, “Filling the THz gap-high power sources and applications,” Rep. Prog. Phys.69, 301–326 (2005).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009).
[CrossRef]

Science (4)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010).
[CrossRef] [PubMed]

Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005).
[CrossRef]

Solid State Commun. (1)

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008).
[CrossRef]

Z. Phys. (1)

A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216, 396 (1968).

Other (7)

A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, Ed., New York (McGraw-Hill, 2007).

M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Periodically-modulated graphene leaky-wave antenna for electronic beamscanning at THz,” arXiv:1305.4774 [cond-mat.mes-hall] (2013).

R. J. Pryputniewicz, “MEMS summitv technology,” Worcester Polytechnic Institute, Worcester MA (2002).

Ansoft Corporation, “High Frequency Structure Simulator (HFSS),” v.14. (2012).

D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).

Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting, San Francisco, USA (2008).

J. Perruisseau-Carrier, “Graphene for antenna applications: Opportunities and challenges from microwaves to THz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1:
Fig. 1:

Schematic diagram of a graphene strip with width W and conductivity σ placed at the interface between free-space and a dielectric with permittivity εr. A polysilicon layer is located beneath graphene to control its conductivity via the electric field effect by applying a DC bias voltage. The inset depicts the structure cross section.

Fig. 2:
Fig. 2:

Characteristics of the fundamental transverse-magnetic plasmon propagating along a monolayer graphene strip. (a) Normalized dispersion features (Re[ky,spp]/k0) and (b) figure of merit (Re[ky,spp]/Im[ky,spp]) of plasmons versus the strip width W for different values of chemical potential μc. Operation frequency is set to f0 = 1.5 THz. (c) Normalized dispersion features, and (d) figure of merit of plasmons versus frequency for different values of chemical potential μc. Strip width is set to W = 7.8 μm. The dielectric permittivity is εr = 3.8, graphene relaxation time is τ = 1.0 ps and temperature is set to T = 300° K.

Fig. 3:
Fig. 3:

Equivalent modal surface impedance ZES of a monolayer graphene strip. Equivalent surface resistance (a) and reactance (b) versus the strip width W for different chemical potential values. Operation frequency is set to f0 = 1.5 THz. Equivalent surface resistance (c) and reactance (d) versus frequency for different chemical potential values. Strip width is set to W = 7.8 μm. The dielectric permittivity is εr = 3.8, graphene relaxation time is τ = 1.0 ps and temperature is set to T = 300° K.

Fig. 4:
Fig. 4:

Proposed width-modulated graphene strip operating as a leaky-wave antenna. (a) Schematic of the structure. (b) Top view of a unit-cell. (c) Cross-section.

Fig. 5:
Fig. 5:

Characteristics of the proposed width-modulated graphene strip versus the distance along the strip axis. (a) Normalized phase constant (left) and equivalent local surface reactance (right). (b) Physical dimensions of the strip width. Operation frequency is set to f0 = 1.5 THz, graphene relaxation time and chemical potential are set to τ = 1.0 ps and μc = 0.7eV, respectively, and temperature is T = 300° K.

Fig. 6:
Fig. 6:

Radiation characteristics of the proposed width-modulated strip for different chemical potential values. (a) Coupling angle versus frequency. (b) Normalized coupling rate versus frequency.

Fig. 7:
Fig. 7:

Coupling efficiency of the proposed width-modulated strip for different chemical potential values.

Fig. 8:
Fig. 8:

Radiation patterns (ZY plane) of the proposed graphene-based width-modulated strip. (a) Beam scanning versus frequency. Graphene chemical potential is set to μc = 0.7 eV. (b) Beam scanning versus chemical potential. Operation frequency is set to f0 = 1.5 THz. Solid lines are obtained with the finite-elements software HFSS and dashed lines with the proposed theory. The geometrical parameters of the structure are shown in Fig. 5, graphene relaxation time is set to τ = 1.0 ps and temperature is T = 300° K.

Fig. 9:
Fig. 9:

Electric field magnitude on the transversal plane (ZY) of the proposed width-modulated strip. The geometrical parameters of the structure are shown in Fig. 5, operating frequency is set to f0 = 1.7 THz, graphene relaxation time is τ = 1.0 ps, chemical potential is set to μc = 0.7 eV, and temperature is T = 300° K.

Fig. 10:
Fig. 10:

Electric field magnitude on the transversal plane (ZY) of two width-modulated strips separated 375 μm in the z axis. Plasmons are fed into the input port of the first strip. They propagate along the strip and are subsequently radiated towards free-space, coupled into the second structure, and transmitted towards the output port. The operating frequency is set to f0 = 1.5 THz, graphene relaxation time is τ = 1.0 ps, and temperature is T = 300° K. The chemical potential of the first and second graphene strips are set to μc = 0.67 and μc = 0.78 eV, respectively. The physical dimensions of both structures are detailed in Fig. 5.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

η ( β y , spp , W ) = χ Im [ σ ( f β y , spp ) ] f β y , spp W ,
Z E S = k 0 2 k y , spp 2 ω ε 0 ,
X M ( y ) = X E S [ 1 + M cos ( 2 π y p ) ] ,
η rad = α y , rad α y , rad + α y , spp ( 1 e 2 ( α y , rad + α y , spp ) L e ) ,
θ 0 arcsin ( β y , spp k 0 + n λ 0 p ) ,
σ ( ω , μ c , Γ , T ) = j q e 2 ( ω j 2 Γ ) π h ¯ 2 [ 1 ( ω j 2 Γ ) 2 0 ε ( f d ( ε ) ε f d ( ε ) ε ) ε 0 f d ( ε ) f d ( ε ) ( ω j 2 Γ ) 2 4 ( ε / h ¯ ) 2 ε ] ,
f d ( ε ) = ( e ( ε | μ c | ) / k B T + 1 ) 1 ,
C ox ( V D C V Dirac ) = q e n s ,
n s = 2 π h ¯ 2 v f 2 0 ε [ f d ( ε μ c ) f d ( ε + μ c ) ] ε ,
E t | S = Z S ( z ^ × H t ) | S ,
X M ( y ) = X E S [ 1 + M cos ( 2 π x p ) ] ,
k z n = k 0 2 ( k y 0 2 + 2 π n p ) .
0 = a ( n , 0 ) + M 2 / 4 a ( n , 1 ) M 2 / 4 a ( n , 2 ) M 2 / 4 a ( n , 3 ) _ M 2 / 4 a ( n , 1 ) M 2 / 4 a ( n , 2 ) M 2 / 4 a ( n , 3 ) ,
a ( n , t ) = j X E S 1 ( k y 0 k 0 + 2 π ( n t ) k 0 p ) 2 .
k y = β y + j ( α y , rad + α y , spp ) ,

Metrics