Abstract

We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB3O6 (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron.6(6), 1061–1071 (2000).
    [CrossRef]
  2. U. Schwarz, “Ultraviolet laser diodes: Indium-free success,” Nat. Photonics2(9), 521–522 (2008).
    [CrossRef]
  3. H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
    [CrossRef]
  4. K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, “High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source,” Opt. Lett.37(24), 5049–5051 (2012).
    [CrossRef] [PubMed]
  5. N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
    [CrossRef]
  6. M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
    [CrossRef]
  7. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett.33(15), 1705–1707 (2008).
    [CrossRef] [PubMed]
  8. I. Ricciardi, M. De Rosa, A. Rocco, P. Ferraro, A. Vannucci, P. Spano, and P. De Natale, “Sum-frequency generation of cw ultraviolet radiation in periodically poled LiTaO3.,” Opt. Lett.34(9), 1348–1350 (2009).
    [CrossRef] [PubMed]
  9. J. Hirohashi, Y. Tomihari, T. Fukui, S. Makio, K. Suzuki, K. Imai, H. Motegi, and Y. Furukawa, “Low noise CW 355 nm generation by simple single pass configuration with PPMgSLTs from fiber based laser,” Lasers, Sources, and Related Photonic Devices Technical Digest (2012).
  10. S.-Y. Tu, A. H. Kung, S. Kurimura, and T. Ikegami, “Broadly tunable ultraviolet light generation in a compact MgO-doped periodically-poled stoichiometric lithium tantalate optical parametric oscillator with a high-Q cavity,” Appl. Opt.47(31), 5762–5766 (2008).
    [CrossRef] [PubMed]
  11. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
    [CrossRef]
  12. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express19(12), 11152–11169 (2011).
    [CrossRef] [PubMed]
  13. K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm,” Opt. Express19(12), 11631–11637 (2011).
    [CrossRef] [PubMed]
  14. M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron.13(3), 679–691 (2007).
    [CrossRef]
  15. A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B67(3), 331–338 (1998).
    [CrossRef]
  16. P. Peuser, W. Platz, A. Fix, G. Ehret, A. Meister, M. Haag, and P. Zolichowski, “Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation,” Appl. Opt.48(19), 3839–3845 (2009).
    [CrossRef] [PubMed]
  17. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express16(10), 6883–6888 (2008).
    [CrossRef] [PubMed]
  18. S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
    [CrossRef]
  19. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett.23(3), 207–209 (1998).
    [CrossRef] [PubMed]
  20. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave, single-frequency, solid-state blue source for the 425-489 nm spectral range,” Opt. Lett.33(11), 1228–1230 (2008).
    [CrossRef] [PubMed]
  21. H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys.88(1), 240–244 (2000).
    [CrossRef]
  22. R. L. Sutherland, “Frequency doubling and mixing,” in Handbook of Nonlinear Optics (Marcel Dekker, Inc. 1996), Chap. 2.

2012 (1)

2011 (4)

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express19(12), 11152–11169 (2011).
[CrossRef] [PubMed]

K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “13.1 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm,” Opt. Express19(12), 11631–11637 (2011).
[CrossRef] [PubMed]

2009 (2)

2008 (5)

2007 (2)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron.13(3), 679–691 (2007).
[CrossRef]

2006 (1)

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

2000 (2)

J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron.6(6), 1061–1071 (2000).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys.88(1), 240–244 (2000).
[CrossRef]

1998 (2)

W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett.23(3), 207–209 (1998).
[CrossRef] [PubMed]

A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B67(3), 331–338 (1998).
[CrossRef]

1995 (1)

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

Alexander, J. I.

Aubert, N.

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

Bohaty, L.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys.88(1), 240–244 (2000).
[CrossRef]

Bosenberg, W. R.

Chaitanya Kumar, S.

K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, “High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source,” Opt. Lett.37(24), 5049–5051 (2012).
[CrossRef] [PubMed]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Chauzat, C.

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

Das, R.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

De Natale, P.

De Rosa, M.

Devi, K.

Ebrahim-Zadeh, M.

Eguchi, N.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

Ehret, G.

Ewing, J. J.

J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron.6(6), 1061–1071 (2000).
[CrossRef]

Fallahi, M.

Fan, L.

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

Féron, P.

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

Ferraro, P.

Fix, A.

Georges, T.

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

Haag, M.

Hader, J.

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys.88(1), 240–244 (2000).
[CrossRef]

Hessenius, C.

Honda, Y.

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

Ikegami, T.

Kan, H.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

Kaneda, Y.

Kitaoka, Y.

Kubota, S.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

Kumar, S. C.

Kung, A. H.

Kurimura, S.

Kuwabara, M.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

Le Bras, R.

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

Li, L.

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys.88(1), 240–244 (2000).
[CrossRef]

Liu, L. Y.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

Meister, A.

Miyazono, K.

Moloney, J. V.

Mori, Y.

Myers, L. E.

Nishioka, M.

Oka, M.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

Peuser, P.

Peyghambarian, N.

Platz, W.

Ricciardi, I.

Rocco, A.

Samanta, G. K.

Sasaki, T.

Schwarz, U.

U. Schwarz, “Ultraviolet laser diodes: Indium-free success,” Nat. Photonics2(9), 521–522 (2008).
[CrossRef]

Shimatani, H.

Shimizu, Y.

Spano, P.

Tu, S.-Y.

Uchiyama, K.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

Vannucci, A.

Wallace, R. W.

Wiechmann, W.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

Yamashita, Y.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

Yarborough, J. M.

Yoshida, H.

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

Yoshimura, M.

Zolichowski, P.

Appl. Opt. (2)

Appl. Phys. B (2)

A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B67(3), 331–338 (1998).
[CrossRef]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys.8(2), 180–198 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Ebrahim-Zadeh, “Efficient ultrafast frequency conversion sources for the visible and ultraviolet based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron.13(3), 679–691 (2007).
[CrossRef]

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-quadrupled Nd:YAG laser,” IEEE J. Sel. Top. Quantum Electron.1(3), 859–866 (1995).
[CrossRef]

J. J. Ewing, “Excimer Laser Technology Development,” IEEE J. Sel. Top. Quantum Electron.6(6), 1061–1071 (2000).
[CrossRef]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys.88(1), 240–244 (2000).
[CrossRef]

Nat. Photonics (1)

U. Schwarz, “Ultraviolet laser diodes: Indium-free success,” Nat. Photonics2(9), 521–522 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Status Solidi A (1)

H. Yoshida, M. Kuwabara, Y. Yamashita, K. Uchiyama, and H. Kan, “The current status of ultraviolet laser diodes,” Phys. Status Solidi A208(7), 1586–1589 (2011).
[CrossRef]

Solid State Lasers and Amplifiers (1)

N. Aubert, T. Georges, C. Chauzat, R. Le Bras, and P. Féron, “Diode-pumped low noise CW 355-nm intra-cavity tripled laser up to 20 mW,” Solid State Lasers and AmplifiersII, 61900E, 61900E-9 (2006).
[CrossRef]

Other (2)

J. Hirohashi, Y. Tomihari, T. Fukui, S. Makio, K. Suzuki, K. Imai, H. Motegi, and Y. Furukawa, “Low noise CW 355 nm generation by simple single pass configuration with PPMgSLTs from fiber based laser,” Lasers, Sources, and Related Photonic Devices Technical Digest (2012).

R. L. Sutherland, “Frequency doubling and mixing,” in Handbook of Nonlinear Optics (Marcel Dekker, Inc. 1996), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the tunable, all-solid-state, cw UV source. λ/2, half-wave plate; PBS, polarizing beam-splitter; L, lens; M1-4, mirrors; F, Filter.

Fig. 2
Fig. 2

(a) Variation of the cw UV power as a function of angle, θ, of the BIBO at λUV = 339.7 nm. The solid line is the sinc2 fit to the experimental data. (b) Theoretical angular acceptance bandwidth of 5-mm-long BIBO crystal.

Fig. 3
Fig. 3

Variation of (a) UV, (b) idler, and (c) signal power across the respective tuning ranges, at the maximum pump power of 10 W at 532 nm.

Fig. 4
Fig. 4

Variation of UV power and idler output power with input pump power. The solid lines are the quadratic and linear fit to the UV and idler experimental data, respectively. Inset: (a) Signal power scaling. The solid line is the linear fit to the experimental data. (b) Theoretical UV power scaling.

Fig. 5
Fig. 5

Far-field energy distribution of generated UV at 338.2 nm for pump power of 10 W.

Fig. 6
Fig. 6

Passive power stability of (a) UV and (b) signal output from the SRO, over >1 min.

Fig. 7
Fig. 7

(a) Spectrum of the waves involved in SFG at TQPM = 145 °C, and (b) frequency stability of the generated UV radiation at 337.99122 nm over >1 min.

Metrics