Abstract

Cubic Au-AgCdS core-shell nanostructures were synthesized through cation exchange method assisted by tributylphosphine (TBP) as a phase-transfer agent. Among intermediate products, Au-Ag core-shell nanocubes exhibited many high-order plasmon resonance modes related to the special cubic shape, and these plasmon bands red-shifted along with the increasing of particle size. The plasmon band of Au core first red-shifted and broadened at the step of Au-Ag2S and then blue-shifted and narrowed at the step of Au-AgCdS. Since TBP was very crucial for the efficient conversion from Ag2S to CdS, we found that both absorption and fluorescence of the final products could be controlled by TBP.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
    [Crossref] [PubMed]
  2. Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
    [Crossref] [PubMed]
  3. B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
    [Crossref] [PubMed]
  4. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  6. H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
    [Crossref]
  7. H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
    [Crossref]
  8. N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
    [Crossref] [PubMed]
  9. D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc. 134(2), 1221–1227 (2012).
    [Crossref] [PubMed]
  10. Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
    [Crossref] [PubMed]
  11. W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater. 20(23), 7204–7206 (2008).
    [Crossref]
  12. J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc. 130(30), 9673–9675 (2008).
    [Crossref] [PubMed]
  13. M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
    [Crossref]
  14. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
    [Crossref] [PubMed]
  15. S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
    [Crossref] [PubMed]
  16. L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
    [Crossref]
  17. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  18. A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127(36), 12444–12445 (2005).
    [Crossref] [PubMed]
  19. X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
    [Crossref] [PubMed]
  20. M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
    [Crossref] [PubMed]
  21. Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
    [Crossref]
  22. X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
    [Crossref] [PubMed]
  23. Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
    [Crossref] [PubMed]
  24. G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
    [Crossref] [PubMed]
  25. J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
    [Crossref] [PubMed]
  26. D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
    [Crossref] [PubMed]
  27. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103(18), 3529–3533 (1999).
    [Crossref]
  28. M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
    [Crossref]
  29. F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
    [Crossref]
  30. X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
    [Crossref] [PubMed]
  31. Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
    [Crossref] [PubMed]
  32. J. M. Bennett, J. L. Stanford, and E. J. Ashley, “Optical constants of silver sulfide tarnish films,” J. Opt. Soc. Am. 60(2), 224–232 (1970).
    [Crossref]
  33. S. J. Czyzak, W. M. Baker, R. C. Crane, and J. B. Howe, “Refractive indexes of single synthetic zinc sulfide and cadmium sulfide crystals,” J. Opt. Soc. Am. 47(3), 240–243 (1957).
    [Crossref]
  34. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
    [Crossref] [PubMed]
  35. D. E. Palik, “Introductory remarks,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press; San Diego, Calif, 1998).
  36. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [Crossref] [PubMed]
  37. J. M. Huang and C. J. Murphy, “Luminescence of CdS nanoparticles doped and activated with foreign ions,” Proc. MRS 560, 33–38 (1999).
    [Crossref]
  38. N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
    [Crossref]
  39. R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
    [Crossref] [PubMed]

2013 (1)

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

2012 (8)

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[Crossref] [PubMed]

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc. 134(2), 1221–1227 (2012).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

2011 (3)

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
[Crossref]

2010 (6)

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[Crossref] [PubMed]

R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
[Crossref] [PubMed]

2009 (6)

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[Crossref] [PubMed]

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (3)

W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater. 20(23), 7204–7206 (2008).
[Crossref]

J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc. 130(30), 9673–9675 (2008).
[Crossref] [PubMed]

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

2006 (1)

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

2005 (1)

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127(36), 12444–12445 (2005).
[Crossref] [PubMed]

2004 (2)

M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
[Crossref] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

1999 (2)

J. M. Huang and C. J. Murphy, “Luminescence of CdS nanoparticles doped and activated with foreign ions,” Proc. MRS 560, 33–38 (1999).
[Crossref]

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103(18), 3529–3533 (1999).
[Crossref]

1998 (1)

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

1970 (1)

1957 (1)

Achermann, M.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[Crossref] [PubMed]

Alivisatos, A. P.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Ashley, E. J.

Bachelot, R.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Baker, W. M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Bennett, J. M.

Cabrini, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Chen, C. C.

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

Chen, H.

Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
[Crossref]

Chen, J.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

Chen, W. T.

W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater. 20(23), 7204–7206 (2008).
[Crossref]

Chen, Y. F.

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

Cho, E. C.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Chumanov, G.

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127(36), 12444–12445 (2005).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Crane, R. C.

Czyzak, S. J.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Demir, H. V.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Dhuey, S.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Dridi, M.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

El-Sayed, M. A.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103(18), 3529–3533 (1999).
[Crossref]

Eremenko, A. M.

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Fu, X. F.

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Galagan, Yu. A.

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

Gargas, D.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gong, H. M.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Gray, S. K.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Guyot-Sionnest, P.

M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

Habteyes, T. G.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Haggui, M.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Hao, Z. H.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Howe, J. B.

Hsu, Y. J.

W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater. 20(23), 7204–7206 (2008).
[Crossref]

Huan, C. H. A.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Huang, J. M.

J. M. Huang and C. J. Murphy, “Luminescence of CdS nanoparticles doped and activated with foreign ions,” Proc. MRS 560, 33–38 (1999).
[Crossref]

Hughes, S. M.

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
[Crossref] [PubMed]

Ji, Y.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Jia, S. F.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kinnan, M. K.

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127(36), 12444–12445 (2005).
[Crossref] [PubMed]

Kryukov, A. I.

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

Kuchmii, S. Ya.

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

Kumar, L.

R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
[Crossref] [PubMed]

Kumbhar, A. S.

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127(36), 12444–12445 (2005).
[Crossref] [PubMed]

Lee, C.

G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[Crossref] [PubMed]

Lee, J. S.

J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc. 130(30), 9673–9675 (2008).
[Crossref] [PubMed]

Lee, K.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
[Crossref] [PubMed]

Lee, Y. H.

Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
[Crossref]

Leone, S. R.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Li, M.

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

Li, Q.

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

Li, W.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Li, Z.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Li, Z. Y.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Liang, S.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

Lin, H. Y.

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

Link, S.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103(18), 3529–3533 (1999).
[Crossref]

Liu, M.

M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

Liu, S.

N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

Liu, S. D.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Liu, X.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Liu, X. L.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Liu, Y.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ma, Y.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Marguet, S.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Ming, T.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Moran, C.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Murphy, C. J.

J. M. Huang and C. J. Murphy, “Luminescence of CdS nanoparticles doped and activated with foreign ions,” Proc. MRS 560, 33–38 (1999).
[Crossref]

Nan, F.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ni, W.

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Oetjen, L. K.

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Ouyang, M.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
[Crossref] [PubMed]

Pandey, A. C.

R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
[Crossref] [PubMed]

Park, G.

G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[Crossref] [PubMed]

D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc. 134(2), 1221–1227 (2012).
[Crossref] [PubMed]

Paul Alivisatos, A.

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
[Crossref] [PubMed]

Peng, B.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Peng, X. N.

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

Perez, H.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Plain, J.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Qin, D.

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

Schatz, G. C.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schuck, P. J.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Seo, D.

G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[Crossref] [PubMed]

D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc. 134(2), 1221–1227 (2012).
[Crossref] [PubMed]

Sethi, R.

R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sharma, P. K.

R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
[Crossref] [PubMed]

Shevchenko, E. V.

J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc. 130(30), 9673–9675 (2008).
[Crossref] [PubMed]

Smirnova, N. P.

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

Son, D. H.

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
[Crossref] [PubMed]

Song, H.

D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc. 134(2), 1221–1227 (2012).
[Crossref] [PubMed]

G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[Crossref] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stanford, J. L.

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Su, D.

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

Su, X. R.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Sum, T. C.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Sun, Z.

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Talapin, D. V.

J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc. 130(30), 9673–9675 (2008).
[Crossref] [PubMed]

Tang, Y.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
[Crossref] [PubMed]

Tao, J.

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

Tuominen, M. T.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[Crossref] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Wang, D. I.

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

Wang, J.

Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
[Crossref]

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Wang, J. B.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Wang, J. H.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Wang, L. B.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Wang, P.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, Q. Q.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Wang, X.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[Crossref] [PubMed]

Wang, Y. L.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103(18), 3529–3533 (1999).
[Crossref]

Wen, L. P.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

Wiederrecht, G. P.

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Wood, E.

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Wu, H.

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Wu, J. G.

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

Wu, X.

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

Xia, X.

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

Xia, Y.

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Xiao, S.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Xie, Z.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Xiong, Q.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Xu, Q. H.

Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
[Crossref]

Xu, Y. J.

N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

Yang, T.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[Crossref] [PubMed]

Yang, T. T.

W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater. 20(23), 7204–7206 (2008).
[Crossref]

Yang, Y. Z.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Yang, Z.

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Yang, Z. J.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

Yeung, M. H.

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Yin, Y.

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
[Crossref] [PubMed]

Yu, L.

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Yu, T.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Yu, X. F.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Zeng, J.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
[Crossref] [PubMed]

Zhang, N.

N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

Zhang, Q.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

Zhang, Z.

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhou, F.

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Zhou, J.

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Zhou, L.

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zhu, Y.

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

ACS Nano (5)

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6(7), 6250–6259 (2012).
[Crossref] [PubMed]

X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano 4(1), 113–120 (2010).
[Crossref] [PubMed]

M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano 6(2), 1299–1307 (2012).
[Crossref] [PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[Crossref] [PubMed]

T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano 6(6), 5702–5709 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater. 19(2), 298–303 (2009).
[Crossref]

M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater. 21(10), 1788–1794 (2011).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl. 48(16), 2881–2885 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett. 94(15), 153102 (2009).
[Crossref]

H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett. 88(16), 161911 (2006).
[Crossref]

Chem. Mater. (1)

W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater. 20(23), 7204–7206 (2008).
[Crossref]

J. Am. Chem. Soc. (5)

J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc. 130(30), 9673–9675 (2008).
[Crossref] [PubMed]

A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc. 127(36), 12444–12445 (2005).
[Crossref] [PubMed]

D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc. 134(2), 1221–1227 (2012).
[Crossref] [PubMed]

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc. 134(3), 1793–1801 (2012).
[Crossref] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Phys. Chem. B (3)

S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103(18), 3529–3533 (1999).
[Crossref]

M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B 108(19), 5882–5888 (2004).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (2)

F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[Crossref]

Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C 115(16), 7997–8004 (2011).
[Crossref]

Langmuir (1)

G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir 28(24), 9003–9009 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett. 11(7), 3010–3015 (2011).
[Crossref] [PubMed]

S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett. 12(10), 5281–5286 (2012).
[Crossref] [PubMed]

Nanoscale (2)

N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale 4(7), 2227–2238 (2012).
[Crossref] [PubMed]

X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale 5(12), 5368–5374 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2010).
[Crossref] [PubMed]

Nature (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature 466(7302), 91–95 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[Crossref] [PubMed]

Proc. MRS (1)

J. M. Huang and C. J. Murphy, “Luminescence of CdS nanoparticles doped and activated with foreign ions,” Proc. MRS 560, 33–38 (1999).
[Crossref]

Science (2)

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science 327(5973), 1634–1638 (2010).
[Crossref] [PubMed]

D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science 306(5698), 1009–1012 (2004).
[Crossref] [PubMed]

Theor. Exp. Chem. (1)

N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem. 34(5), 272–276 (1998).
[Crossref]

Other (1)

D. E. Palik, “Introductory remarks,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press; San Diego, Calif, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Diagrammatic sketch for stepwise synthesis of Au-AgCdS core-shell nanocubes. (b-f) TEM images of (b) Au, (c) Au-Ag, (d) Au-Ag2S, (e) Au-AgCdS(I) NPs synthesized without TBP, and (f) Au-AgCdS(II) NPs synthesized with TBP. All the bars represent 100 nm.

Fig. 2
Fig. 2

(a) EDX elemental maps of Au, Ag, Cd, and S in a Au-AgCdS(II) nanocube. (b) Line profile of Au(II), Ag(II), and Cd(II) in the same Au-AgCdS(II) nanocube. All lines are normalized and the maximum intensity of Au is set to 1. Cd(I) line profile of a Au-AgCdS(I) nanocube (red) is also shown for comparison, which is normalized by it’s own Au distribution.

Fig. 3
Fig. 3

(a) Absorption spectra of Au and Au-Ag nanocubes with different particle size. dAu and dAg represent the side length of Au nanocubes and the thickness of silver shell, respectively. (b) Multiple plasmon resonance modes vary with the size of the Au-Ag nanocubes. (c, d) Absorption spectra of Au-Ag2S NPs (0 hr), Au-AgCdS(II) and Au-AgCdS(I) NPs synthesized at different exchange reaction time T (T = 1, 2, 4 and 6 hrs).

Fig. 4
Fig. 4

FL spectra of Au-Ag2S (0 hr), (a) Au-AgCdS(II) NPs and (b) Au-AgCdS(I) NPs synthesized at different reaction time T (T = 1, 2, 4 and 6 hrs) at 400 nm excitation wavelength.

Metrics