Abstract

Europium doped β-PbF2 nano-particles with different doping concentration are prepared to investigate the site structure of Eu3+ dopants. It is concluded that the site symmetry of Eu3+ dopants in β-PbF2 nano-particles lowers from Oh to D4h with the increase of doping concentration. By X-ray diffraction analysis and photoluminescence spectroscopy study, a doping concentration induced phase transition from lowly doped cubic Pb3EuF9 to highly doped tetragonal PbEuF5 is detected. The intermediate phase of moderately doped nano-particles, which contains both phases mentioned above, is observed for the first time. Moreover, the temperature-dependent intermediate phase analysis suggests that the tetragonal phase is more stable than the cubic phase, which is also confirmed by the first-principle calculations. Our results suggest that the doping concentration induced phase transition in β-PbF2 nano-particles can be used for understanding other Lanthanide-doped nano-particle systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
    [CrossRef] [PubMed]
  2. J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
    [CrossRef] [PubMed]
  3. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  4. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
    [CrossRef] [PubMed]
  5. B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
    [CrossRef]
  6. C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
    [CrossRef] [PubMed]
  7. F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
    [CrossRef] [PubMed]
  8. J. W. Wang, J. H. Hao, and P. A. Tanner, “Upconversion luminescence of an insulator involving a band to band multiphoton excitation process,” Opt. Express19(12), 11753–11758 (2011).
    [CrossRef] [PubMed]
  9. M. Haase and H. Schäfer, “Nanopartikel für die Aufwärtskonversion,” Angew. Chem.123(26), 5928–5950 (2011).
    [CrossRef]
  10. O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004).
    [CrossRef] [PubMed]
  11. S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
    [CrossRef]
  12. M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002).
    [CrossRef]
  13. J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
    [CrossRef]
  14. A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
    [CrossRef]
  15. Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
    [CrossRef] [PubMed]
  16. A. Kar and A. Patra, “Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer,” Nanoscale4(12), 3608–3619 (2012).
    [CrossRef] [PubMed]
  17. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett.63(24), 3268–3270 (1993).
    [CrossRef]
  18. P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
    [CrossRef]
  19. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
    [CrossRef]
  20. V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007).
    [CrossRef] [PubMed]
  21. M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).
  22. M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003).
    [CrossRef]
  23. R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982).
    [CrossRef]
  24. S. Mho and J. C. Wright, “Site selective spectroscopy of defect chemistry in CdF2:Eu,” J. Chem. Phys.77(3), 1183–1192 (1982).
    [CrossRef]
  25. F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986).
    [CrossRef] [PubMed]
  26. M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000).
    [CrossRef]
  27. J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
    [CrossRef]
  28. K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007).
    [CrossRef]
  29. N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
    [CrossRef] [PubMed]
  30. H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
    [CrossRef] [PubMed]
  31. H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
    [CrossRef] [PubMed]
  32. J. Rodriguez-Carvajal, “FULLPROF program for Rietveld, Profile Matching and Integrated Intensities Refinement of X-ray and/or Neutron Data, Satellite Meeting on Powder Diffraction of the XVth Congress of IUCr,” Toulouse, France, p. 127 (1990).
  33. T. Roisnel, and J. Rodriguez-Carvajal, “WinPLOTR: A Windows tool for powder diffraction patterns analysis,” in Epdic 7: European Powder Diffraction Pts 1 and 2, 378, 118 (2001).
  34. C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
    [CrossRef]
  35. M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
  36. C. Liu and J. Heo, “Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics,” J. Am. Ceram. Soc.95(7), 2100–2102 (2012).
    [CrossRef]
  37. C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013).
    [CrossRef]
  38. K. Leśniak, “Model simulation of the tetragonal symmetry centre of a rare-earth ion in a fluorite lattice,” J. Phys. C Solid State Phys.19(15), 2721–2727 (1986).
    [CrossRef]
  39. K. Leśniak, “Crystal fields and dopant-ligand separations in cubic centres of rare-earth ions in fluorites,” J. Phys. Condens. Matter2(25), 5563–5574 (1990).
    [CrossRef]
  40. J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959).
    [CrossRef]
  41. C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966).
    [CrossRef]
  42. M. J. Weber and R. W. Bierig, “Paramagnetic resonance and relaxation of trivalent rare-earth ions in calcium fluoride. I. resonance spectra and crystal fields,” Phys. Rev.134(6A), A1492–A1503 (1964).
    [CrossRef]
  43. Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
    [CrossRef]
  44. G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
    [CrossRef]
  45. B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys.92(1), 508–517 (1990).
    [CrossRef]
  46. B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys.113(18), 7756–7764 (2000).
    [CrossRef]
  47. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B Condens. Matter45(23), 13244–13249 (1992).
    [CrossRef] [PubMed]
  48. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
    [CrossRef]
  49. Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
    [CrossRef]
  50. J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
    [CrossRef]
  51. D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
    [CrossRef] [PubMed]
  52. C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
    [CrossRef]
  53. M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
    [CrossRef]
  54. B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011).
    [CrossRef]
  55. P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
    [CrossRef]
  56. Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
    [CrossRef]
  57. W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
    [CrossRef] [PubMed]

2013 (2)

C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013).
[CrossRef]

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

2012 (5)

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

A. Kar and A. Patra, “Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer,” Nanoscale4(12), 3608–3619 (2012).
[CrossRef] [PubMed]

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

C. Liu and J. Heo, “Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics,” J. Am. Ceram. Soc.95(7), 2100–2102 (2012).
[CrossRef]

2011 (7)

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

J. W. Wang, J. H. Hao, and P. A. Tanner, “Upconversion luminescence of an insulator involving a band to band multiphoton excitation process,” Opt. Express19(12), 11753–11758 (2011).
[CrossRef] [PubMed]

M. Haase and H. Schäfer, “Nanopartikel für die Aufwärtskonversion,” Angew. Chem.123(26), 5928–5950 (2011).
[CrossRef]

B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
[CrossRef]

2010 (8)

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
[CrossRef]

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
[CrossRef]

2009 (3)

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
[CrossRef] [PubMed]

2008 (1)

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007).
[CrossRef]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

2006 (3)

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
[CrossRef]

2005 (1)

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
[CrossRef]

2004 (3)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004).
[CrossRef] [PubMed]

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

2003 (2)

M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003).
[CrossRef]

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

2002 (2)

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

2001 (1)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).

2000 (2)

M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000).
[CrossRef]

B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys.113(18), 7756–7764 (2000).
[CrossRef]

1999 (1)

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).

1995 (1)

P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
[CrossRef]

1993 (1)

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett.63(24), 3268–3270 (1993).
[CrossRef]

1992 (1)

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B Condens. Matter45(23), 13244–13249 (1992).
[CrossRef] [PubMed]

1990 (2)

B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys.92(1), 508–517 (1990).
[CrossRef]

K. Leśniak, “Crystal fields and dopant-ligand separations in cubic centres of rare-earth ions in fluorites,” J. Phys. Condens. Matter2(25), 5563–5574 (1990).
[CrossRef]

1986 (2)

K. Leśniak, “Model simulation of the tetragonal symmetry centre of a rare-earth ion in a fluorite lattice,” J. Phys. C Solid State Phys.19(15), 2721–2727 (1986).
[CrossRef]

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986).
[CrossRef] [PubMed]

1982 (2)

R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982).
[CrossRef]

S. Mho and J. C. Wright, “Site selective spectroscopy of defect chemistry in CdF2:Eu,” J. Chem. Phys.77(3), 1183–1192 (1982).
[CrossRef]

1966 (1)

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966).
[CrossRef]

1964 (1)

M. J. Weber and R. W. Bierig, “Paramagnetic resonance and relaxation of trivalent rare-earth ions in calcium fluoride. I. resonance spectra and crystal fields,” Phys. Rev.134(6A), A1492–A1503 (1964).
[CrossRef]

1959 (1)

J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).

Babu, P.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Baker, J. M.

J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959).
[CrossRef]

Beggiora, M.

M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Bensalem, C.

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
[CrossRef]

Berry, M. T.

A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
[CrossRef]

Bettinelli, M.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

Bierig, R. W.

M. J. Weber and R. W. Bierig, “Paramagnetic resonance and relaxation of trivalent rare-earth ions in calcium fluoride. I. resonance spectra and crystal fields,” Phys. Rev.134(6A), A1492–A1503 (1964).
[CrossRef]

Borrellia, N. F.

P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
[CrossRef]

Bouffard, M.

M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000).
[CrossRef]

Boyer, J. C.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

Capobianco, J. A.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

Chan, T. S.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

Chateau, C.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).

Chatterjee, D. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Chen, D. Q.

Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
[CrossRef]

Chen, G. Y.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Chen, H. Y.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Chen, J.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Chen, J. M.

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Chen, Q. J.

Chen, X. Y.

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

Cornelius, L. K.

P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
[CrossRef]

Cross, A. M.

A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
[CrossRef]

Dantelle, G.

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
[CrossRef]

Delley, B.

B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys.113(18), 7756–7764 (2000).
[CrossRef]

B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys.92(1), 508–517 (1990).
[CrossRef]

Diaf, M.

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
[CrossRef]

Driesen, K.

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007).
[CrossRef]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

Fan, X. P.

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
[CrossRef]

Fang, X. X.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Ferrari, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Flask, C. A.

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Fontanella, J. J.

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986).
[CrossRef] [PubMed]

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Gan, Z. S.

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Gao, G. J.

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Gao, Q. C.

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

Genotelle, M.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).

Gnanasammandhan, M. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Goldner, P.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).

Görller-Walrand, C.

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

Gu, M.

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

Guo, C. R.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Guo, G. Y.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

Guo, H.

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

Haase, M.

M. Haase and H. Schäfer, “Nanopartikel für die Aufwärtskonversion,” Angew. Chem.123(26), 5928–5950 (2011).
[CrossRef]

O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004).
[CrossRef] [PubMed]

Hamers, R. J.

R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982).
[CrossRef]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Hao, J. H.

Hao, S. W.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Hayes, W.

J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959).
[CrossRef]

Heo, J.

C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013).
[CrossRef]

C. Liu and J. Heo, “Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics,” J. Am. Ceram. Soc.95(7), 2100–2102 (2012).
[CrossRef]

Hong, M. H.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Hu, L. L.

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Hu, N.

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Hu, Z. J.

Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
[CrossRef]

Huang, L.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Huang, P.

Huang, S. M.

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

Islam, M. S.

M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003).
[CrossRef]

Jamalaiah, B. C.

B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011).
[CrossRef]

Jang, K. H.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Jayasankar, C. K.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Jones, D. A.

J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959).
[CrossRef]

Jouart, J. P.

M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000).
[CrossRef]

Joubert, M. F.

M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000).
[CrossRef]

Ju, Q.

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

Jukes, R. T. F.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002).
[CrossRef]

Kar, A.

A. Kar and A. Patra, “Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer,” Nanoscale4(12), 3608–3619 (2012).
[CrossRef] [PubMed]

Kim, E. S.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Kömpe, K.

O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004).
[CrossRef] [PubMed]

Kumar, B. R.

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Lavín, V.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

Lehmann, O.

O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004).
[CrossRef] [PubMed]

Lesniak, K.

K. Leśniak, “Crystal fields and dopant-ligand separations in cubic centres of rare-earth ions in fluorites,” J. Phys. Condens. Matter2(25), 5563–5574 (1990).
[CrossRef]

K. Leśniak, “Model simulation of the tetragonal symmetry centre of a rare-earth ion in a fluorite lattice,” J. Phys. C Solid State Phys.19(15), 2721–2727 (1986).
[CrossRef]

Li, J.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Li, R. F.

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lin, C. C.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

Liu, B.

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

Liu, C.

C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013).
[CrossRef]

C. Liu and J. Heo, “Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics,” J. Am. Ceram. Soc.95(7), 2100–2102 (2012).
[CrossRef]

Liu, L. Q.

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

Liu, M.

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

Liu, R. S.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

Liu, X. G.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Liu, X. L.

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

Liu, Y.

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

Liu, Y. S.

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

Lozano-Gorrín, A. D.

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

Lu, Y. H.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Luo, Q.

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
[CrossRef]

Luo, W. Q.

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

Ma, E.

Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
[CrossRef]

Mai, H. X.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Mao, C. B.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Martín, I. R.

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

May, P. S.

A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
[CrossRef]

Méndez-Ramos, J.

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

Mho, S.

S. Mho and J. C. Wright, “Site selective spectroscopy of defect chemistry in CdF2:Eu,” J. Chem. Phys.77(3), 1183–1192 (1982).
[CrossRef]

Mi, C. C.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Montagna, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Moos, H. W.

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966).
[CrossRef]

Mortier, M.

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
[CrossRef]

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
[CrossRef]

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).

Newhouse, M. A.

P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
[CrossRef]

Ni, C.

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

Núñez, P.

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

Nyk, M.

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Ohulchanskyy, T. Y.

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Ohwaki, J.

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett.63(24), 3268–3270 (1993).
[CrossRef]

Pan, J. J.

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Pandey, B. C.

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966).
[CrossRef]

Patra, A.

A. Kar and A. Patra, “Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer,” Nanoscale4(12), 3608–3619 (2012).
[CrossRef] [PubMed]

Patriarche, G.

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
[CrossRef]

Perdew, J. P.

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B Condens. Matter45(23), 13244–13249 (1992).
[CrossRef] [PubMed]

Prasad, P. N.

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Qian, Q.

Qiao, X. S.

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
[CrossRef]

Qiu, H. L.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Qiu, J. R.

Rama Gopal, K.

B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011).
[CrossRef]

Reaney, I. M.

M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Rector, C. W.

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966).
[CrossRef]

Rodríguez, V. D.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

Rodríguez-Mendoza, U. R.

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

Rolli, R.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Schäfer, H.

M. Haase and H. Schäfer, “Nanopartikel für die Aufwärtskonversion,” Angew. Chem.123(26), 5928–5950 (2011).
[CrossRef]

Seddon, A. B.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Seo, H. J.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Shi, L.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Si, R.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Soitah, T. N.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Speghini, A.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

Sun, L.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Sun, L. D.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Sun, Y.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Tanner, P. A.

Tick, P. A.

P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
[CrossRef]

Tikhomirov, V. K.

V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007).
[CrossRef] [PubMed]

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

Tu, D. T.

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

van Veggel, F. C. J. M.

A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
[CrossRef]

Verhoeven, J. W.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002).
[CrossRef]

Vetrone, F.

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

Vijaya, R.

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Vijaya Kumar, M. V.

B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011).
[CrossRef]

Vivien, D.

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
[CrossRef]

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
[CrossRef]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, J. W.

Wang, L. P.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Wang, M.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Wang, Y.

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett.63(24), 3268–3270 (1993).
[CrossRef]

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B Condens. Matter45(23), 13244–13249 (1992).
[CrossRef] [PubMed]

Wang, Y. H.

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

Wang, Y. N.

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Wang, Y. S.

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
[CrossRef] [PubMed]

Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
[CrossRef]

Wang, Y. Z.

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Weber, M. J.

M. J. Weber and R. W. Bierig, “Paramagnetic resonance and relaxation of trivalent rare-earth ions in calcium fluoride. I. resonance spectra and crystal fields,” Phys. Rev.134(6A), A1492–A1503 (1964).
[CrossRef]

Weesner, F. J.

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986).
[CrossRef] [PubMed]

Werts, M. H. V.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002).
[CrossRef]

Wietfeld, J. R.

R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982).
[CrossRef]

Wright, J. C.

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986).
[CrossRef] [PubMed]

S. Mho and J. C. Wright, “Site selective spectroscopy of defect chemistry in CdF2:Eu,” J. Chem. Phys.77(3), 1183–1192 (1982).
[CrossRef]

R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982).
[CrossRef]

Xiao, Q. B.

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

Xiao, Z. R.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

Xu, C.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Xu, R. R.

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Xu, S. K.

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

Yan, C. H.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Yan, Z. G.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Yang, C. H.

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

Yang, Z. M.

You, L. P.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Yu, H.

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Zhang, J. J.

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Zhang, M.

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

Zhang, P.

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

Zhang, Q. Y.

Zhang, W. J.

Zhang, X. H.

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
[CrossRef]

Zhang, Y.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Zhang, Y. W.

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

Zhao, L. J.

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Zhao, X. J.

C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013).
[CrossRef]

Zhu, H. M.

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009).
[CrossRef]

Angew. Chem. (1)

M. Haase and H. Schäfer, “Nanopartikel für die Aufwärtskonversion,” Angew. Chem.123(26), 5928–5950 (2011).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002).
[CrossRef]

M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003).
[CrossRef]

Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett.63(24), 3268–3270 (1993).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006).
[CrossRef]

Chem. Mater. (1)

G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004).
[CrossRef] [PubMed]

Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions (1)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).

J. Alloy. Comp. (1)

S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. Liu and J. Heo, “Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics,” J. Am. Ceram. Soc.95(7), 2100–2102 (2012).
[CrossRef]

J. Am. Chem. Soc. (3)

H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006).
[CrossRef] [PubMed]

O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004).
[CrossRef] [PubMed]

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995).
[CrossRef]

J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003).
[CrossRef]

K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007).
[CrossRef]

J. Chem. Phys. (5)

R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982).
[CrossRef]

S. Mho and J. C. Wright, “Site selective spectroscopy of defect chemistry in CdF2:Eu,” J. Chem. Phys.77(3), 1183–1192 (1982).
[CrossRef]

B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys.92(1), 508–517 (1990).
[CrossRef]

B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys.113(18), 7756–7764 (2000).
[CrossRef]

C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966).
[CrossRef]

J. Lumin. (1)

M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012).
[CrossRef]

J. Mater. Chem. (1)

J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (4)

P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010).
[CrossRef]

Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010).
[CrossRef]

C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013).
[CrossRef]

J. Phys. C Solid State Phys. (1)

K. Leśniak, “Model simulation of the tetragonal symmetry centre of a rare-earth ion in a fluorite lattice,” J. Phys. C Solid State Phys.19(15), 2721–2727 (1986).
[CrossRef]

J. Phys. Chem. B (1)

J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004).
[CrossRef]

J. Phys. Chem. C (2)

A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010).
[CrossRef]

Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Leśniak, “Crystal fields and dopant-ligand separations in cubic centres of rare-earth ions in fluorites,” J. Phys. Condens. Matter2(25), 5563–5574 (1990).
[CrossRef]

Mater. Chem. Phys. (1)

Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006).
[CrossRef]

Nanoscale (2)

Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011).
[CrossRef] [PubMed]

A. Kar and A. Patra, “Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer,” Nanoscale4(12), 3608–3619 (2012).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (2)

H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012).
[CrossRef] [PubMed]

H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008).
[CrossRef] [PubMed]

Nature (1)

F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Mater. (3)

M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000).
[CrossRef]

B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011).
[CrossRef]

C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011).
[CrossRef]

Phys. Chem. Chem. Phys. (2)

N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011).
[CrossRef] [PubMed]

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002).
[CrossRef]

Phys. Rev. (1)

M. J. Weber and R. W. Bierig, “Paramagnetic resonance and relaxation of trivalent rare-earth ions in calcium fluoride. I. resonance spectra and crystal fields,” Phys. Rev.134(6A), A1492–A1503 (1964).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B Condens. Matter45(23), 13244–13249 (1992).
[CrossRef] [PubMed]

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986).
[CrossRef] [PubMed]

Proc. Phys. Soc. (1)

J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959).
[CrossRef]

Rare-earth doped transparent glass-ceramics with high cross-sections (1)

M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).

Small (1)

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010).
[CrossRef]

Other (2)

J. Rodriguez-Carvajal, “FULLPROF program for Rietveld, Profile Matching and Integrated Intensities Refinement of X-ray and/or Neutron Data, Satellite Meeting on Powder Diffraction of the XVth Congress of IUCr,” Toulouse, France, p. 127 (1990).

T. Roisnel, and J. Rodriguez-Carvajal, “WinPLOTR: A Windows tool for powder diffraction patterns analysis,” in Epdic 7: European Powder Diffraction Pts 1 and 2, 378, 118 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) XRD patterns of standard β-PbF2, lowly (0.05GC), moderately (0.5GC) and highly doped samples (1.5GC). The inset shows the enlarged three labeled diffraction peaks; HRTEM images of 0.05GC (b) and 1.5GC (c), and the corresponding fast-Fourier transform (FFT) of the diffraction patterns recorded from the area marked with the white circle.

Fig. 2
Fig. 2

A complete description of the phase transition: the phase transformation from cubic to tetragonal phase in lowly and highly doped nano-particles, respectively.

Fig. 3
Fig. 3

Emission spectra of the 5D07Fj (j = 0, 1, 2) transitions with the excitation at 393 nm. The inset shows the photoluminescence decays of the 5D07F1 transitions in 0.05GC, 0.5GC and 1.5GC.

Fig. 4
Fig. 4

Site-selective excitation spectra of the 7F05D1 transition monitoring at 586.5 nm, 589.0 nm and 591.7 nm.

Fig. 5
Fig. 5

XRD Rietveld refinements and the corresponding error curve of 0.05GC (a), 1.5GC (b) and 0.5GC (c). The positions of the Bragg reflections are represented by vertical bars (|).The simulated diffraction line spectra of the oxide phase PbSiO3 (d), the cubic phase Pb3EuF9 (e) and tetragonal phase PbEuF5 (f) are presented for comparisons.

Fig. 6
Fig. 6

XRD patterns of 0.5GC with thermal treatment temperature at 400 °C, 405 °C, and 410 °C. The left inset shows the enlarged diffraction peaks and the right inset presents the crystallized fraction of the cubic and tetragonal phase at different thermal treatment temperature.

Metrics