Abstract

We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
    [CrossRef] [PubMed]
  2. J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
    [CrossRef] [PubMed]
  3. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
    [CrossRef] [PubMed]
  4. F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
    [CrossRef] [PubMed]
  5. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
    [CrossRef]
  6. A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
    [CrossRef]
  7. I. Fialkovsky and D. V. Vassilevich, “Faraday rotation in graphene,” The European Physical Journal B85, 1–10 (2012).
    [CrossRef]
  8. H. Da and G. Liang, “Enhanced faraday rotation in magnetophotonic crystal infiltrated with graphene,” Appl. Phys. Lett.98, 261915–261915–3 (2011).
    [CrossRef]
  9. A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant faraday rotation in graphene metasurfaces,” Appl. Phys. Lett.101, 231605–231605–4 (2012).
    [CrossRef]
  10. R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
    [CrossRef]
  11. H. Da and C.-W. Qiu, “Graphene-based photonic crystal to steer giant faraday rotation,” Appl. Phys. Lett.100, 241106–241106–4 (2012).
    [CrossRef]
  12. Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
    [CrossRef]
  13. I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
    [CrossRef]
  14. J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012).
    [CrossRef]
  15. R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964).
    [CrossRef]
  16. J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
    [CrossRef]
  17. R. Wagreich and C. Davis, “Magnetic field detection enhancement in an external cavity fiber fabry-perot sensor,” Journal of Lightwave Technology14, 2246–2249 (1996).
    [CrossRef]
  18. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
    [CrossRef]
  19. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
    [CrossRef]
  20. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
    [CrossRef] [PubMed]
  21. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
    [CrossRef]
  22. I. Crassee and , To be published.
  23. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009).
    [CrossRef]
  24. O. S. Heavens, Thin film physics (Methuen, 1970).
  25. T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002).
    [CrossRef]
  26. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
    [CrossRef] [PubMed]
  27. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
    [CrossRef] [PubMed]
  28. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
    [CrossRef] [PubMed]
  29. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
    [CrossRef]
  30. T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009).
    [CrossRef]

2013 (2)

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

2012 (5)

H. Da and C.-W. Qiu, “Graphene-based photonic crystal to steer giant faraday rotation,” Appl. Phys. Lett.100, 241106–241106–4 (2012).
[CrossRef]

J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012).
[CrossRef]

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

I. Fialkovsky and D. V. Vassilevich, “Faraday rotation in graphene,” The European Physical Journal B85, 1–10 (2012).
[CrossRef]

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant faraday rotation in graphene metasurfaces,” Appl. Phys. Lett.101, 231605–231605–4 (2012).
[CrossRef]

2011 (5)

H. Da and G. Liang, “Enhanced faraday rotation in magnetophotonic crystal infiltrated with graphene,” Appl. Phys. Lett.98, 261915–261915–3 (2011).
[CrossRef]

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

2009 (6)

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009).
[CrossRef]

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009).
[CrossRef]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
[CrossRef] [PubMed]

2006 (2)

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

2004 (1)

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

2002 (1)

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002).
[CrossRef]

1996 (1)

R. Wagreich and C. Davis, “Magnetic field detection enhancement in an external cavity fiber fabry-perot sensor,” Journal of Lightwave Technology14, 2246–2249 (1996).
[CrossRef]

1995 (1)

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

1990 (1)

J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
[CrossRef]

1964 (1)

R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964).
[CrossRef]

Ando, T.

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002).
[CrossRef]

Aoki, H.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009).
[CrossRef]

Avouris, P.

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Bai, J.

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Berger, C.

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Bludov, Y. V.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

Booshehri, L. G.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Bretenaker, F.

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

Brown, N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

Carbone, F.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
[CrossRef] [PubMed]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009).
[CrossRef]

Castro Neto, A. H.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

Coletti, C.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

Conrad, E. H.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Crassee, I.

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

I. Crassee and , To be published.

Da, H.

H. Da and C.-W. Qiu, “Graphene-based photonic crystal to steer giant faraday rotation,” Appl. Phys. Lett.100, 241106–241106–4 (2012).
[CrossRef]

H. Da and G. Liang, “Enhanced faraday rotation in magnetophotonic crystal infiltrated with graphene,” Appl. Phys. Lett.98, 261915–261915–3 (2011).
[CrossRef]

Dai, Z.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Davis, C.

R. Wagreich and C. Davis, “Magnetic field detection enhancement in an external cavity fiber fabry-perot sensor,” Journal of Lightwave Technology14, 2246–2249 (1996).
[CrossRef]

de Heer, W. A.

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Drew, H. D.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Elle, J. A.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Emtsev, K. V.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant faraday rotation in graphene metasurfaces,” Appl. Phys. Lett.101, 231605–231605–4 (2012).
[CrossRef]

Fan, H.

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Feng, R.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Ferreira, A.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

Fialkovsky, I.

I. Fialkovsky and D. V. Vassilevich, “Faraday rotation in graphene,” The European Physical Journal B85, 1–10 (2012).
[CrossRef]

First, P. N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Fuhrer, M. S.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Gabor, N. M.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009).
[CrossRef]

Hass, J.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

Hatsugai, Y.

T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009).
[CrossRef]

Hauge, R. H.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Heavens, O. S.

O. S. Heavens, Thin film physics (Methuen, 1970).

Heer, W. A. d.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

Herriott, D. R.

R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964).
[CrossRef]

Hibino, H.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Hilton, D. J.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Horn, K.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Iwasaki, T.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

Jacob, D.

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

Jarillo-Herrero, P.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Jenkins, G. S.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Jobst, J.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Jopson, R.

J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
[CrossRef]

Kawayama, I.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Kellogg, G. L.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Kim, M.-H.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Kono, J.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Kuzmenko, A. B.

J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012).
[CrossRef]

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
[CrossRef] [PubMed]

Le Floch, A.

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

Le Naour, R.

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

Levallois, J.

J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012).
[CrossRef]

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

Levitov, L. S.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Ley, L.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Li, T.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Li, X.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Liang, G.

H. Da and G. Liang, “Enhanced faraday rotation in magnetophotonic crystal infiltrated with graphene,” Appl. Phys. Lett.98, 261915–261915–3 (2011).
[CrossRef]

Licht, S.

J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
[CrossRef]

Lin, Y.-m.

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Ma, Q.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Marchenkov, A. N.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Marel, D. v. d.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

Martinez, G.

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

Matsunaga, R.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Mayou, D.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

McChesney, J. L.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Milchberg, H. M.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Morimoto, T.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009).
[CrossRef]

Mueller, T.

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Nair, N. L.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Naud, C.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Ogbazghi, A. Y.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Ohta, T.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

Pereira, V.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

Peres, N. M. R.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant faraday rotation in graphene metasurfaces,” Appl. Phys. Lett.101, 231605–231605–4 (2012).
[CrossRef]

Pint, C. L.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Potemski, M.

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

Qiu, C.-W.

H. Da and C.-W. Qiu, “Graphene-based photonic crystal to steer giant faraday rotation,” Appl. Phys. Lett.100, 241106–241106–4 (2012).
[CrossRef]

Ren, L.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Ren, Z.

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Reshanov, S. A.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Rice, W. D.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Riedl, C.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

Röhrl, J.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Rosenberg, R.

R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964).
[CrossRef]

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Rubinstein, C. B.

R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964).
[CrossRef]

Sadowski, M. L.

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

Schmid, A. K.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Seyller, T.

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009).
[CrossRef]

Shimano, R.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Song, J. C. W.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Song, Z.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

Starke, U.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

Stone, J.

J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
[CrossRef]

Stulz, L.

J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
[CrossRef]

Sushkov, A. B.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Suzuura, H.

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002).
[CrossRef]

Takeya, K.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Tanabe, S.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Taniguchi, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Taychatanapat, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Tonouchi, M.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Tran, M.

J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012).
[CrossRef]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Vallet, M.

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

van der Marel, D.

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
[CrossRef] [PubMed]

van Heumen, E.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
[CrossRef] [PubMed]

Vassilevich, D. V.

I. Fialkovsky and D. V. Vassilevich, “Faraday rotation in graphene,” The European Physical Journal B85, 1–10 (2012).
[CrossRef]

Viana-Gomes, J.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

Wagreich, R.

R. Wagreich and C. Davis, “Magnetic field detection enhancement in an external cavity fiber fabry-perot sensor,” Journal of Lightwave Technology14, 2246–2249 (1996).
[CrossRef]

Waldmann, D.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Walter, A. L.

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

Wang, L.

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Wang, X.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Watanabe, K.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

Weber, H. B.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Wu, X.

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

Xia, F.

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Xu, X. L.

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Yan, J.

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

Yoo, J. Y.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Yumoto, G.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Zakharov, A. A.

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

Zheng, Y.

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002).
[CrossRef]

Zhou, Y.

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Appl. Phys. Lett. (4)

H. Da and G. Liang, “Enhanced faraday rotation in magnetophotonic crystal infiltrated with graphene,” Appl. Phys. Lett.98, 261915–261915–3 (2011).
[CrossRef]

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant faraday rotation in graphene metasurfaces,” Appl. Phys. Lett.101, 231605–231605–4 (2012).
[CrossRef]

H. Da and C.-W. Qiu, “Graphene-based photonic crystal to steer giant faraday rotation,” Appl. Phys. Lett.100, 241106–241106–4 (2012).
[CrossRef]

D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995).
[CrossRef]

Applied Optics (1)

R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964).
[CrossRef]

Electronics Letters (1)

J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990).
[CrossRef]

J. Phys. Chem. B (1)

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004).
[CrossRef]

J. Phys. Soc. Jpn. (1)

T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002).
[CrossRef]

Journal of Lightwave Technology (1)

R. Wagreich and C. Davis, “Magnetic field detection enhancement in an external cavity fiber fabry-perot sensor,” Journal of Lightwave Technology14, 2246–2249 (1996).
[CrossRef]

Journal of Physics: Conference Series (1)

T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009).
[CrossRef]

Nano Lett. (1)

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009).
[CrossRef] [PubMed]

Nat. Comm. (1)

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013).
[CrossRef]

Nat. Mater. (1)

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Nature Physics (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011).
[CrossRef]

New Journal of Physics (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013).
[CrossRef]

Phys. Rev. B (2)

I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011).
[CrossRef]

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006).
[CrossRef]

C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009).
[CrossRef]

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008).
[CrossRef] [PubMed]

Science (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008).
[CrossRef] [PubMed]

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011).
[CrossRef] [PubMed]

C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006).
[CrossRef] [PubMed]

Solid State Commun. (1)

J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012).
[CrossRef]

The European Physical Journal B (1)

I. Fialkovsky and D. V. Vassilevich, “Faraday rotation in graphene,” The European Physical Journal B85, 1–10 (2012).
[CrossRef]

Other (2)

I. Crassee and , To be published.

O. S. Heavens, Thin film physics (Methuen, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Transmission (black squares, left axis) and Faraday rotation (red circles, right axis) spectra at 7 Tesla and 5 Kelvin. Note that the Faraday rotation scale is inverted. The horizontal line corresponds to zero Faraday rotation, the vertical line indicates the cyclotron frequency.

Fig. 2
Fig. 2

Simulation of the magneto-optical transmission and Faraday rotation of graphene on and in SiC for three different configurations. Note that the Faraday rotation scale is inverted. (a) Graphene covers one side of SiC, (b) graphene covers both sides of SiC, (c) graphene is in the middle of SiC slab, (d) graphene is in the middle of a SiC slab covered by metallic layers on both sides.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ ± ( ω ) = 2 D π i ω ω c + i γ + σ b
T = | t | 2 + | t + | 2 2 , θ F = 1 2 arg ( t t + )
t ± = 4 n τ s [ ( n + 1 ) 2 ( n 1 ) 2 τ s 2 + Z 0 σ ± ( n + 1 + ( n 1 ) τ s 2 ) ] 1 ,
t constr , ± = τ s ( 1 + Z 0 σ ± 2 ) 1 ,
t ± = 4 n τ s . [ ( n + 1 ) 2 ( n 1 ) 2 τ s 2 + 2 Z 0 σ ± ( n + 1 + ( n 1 ) τ s ) 2 + Z 0 2 σ ± 2 ( 1 τ s 2 ) ] 1 .
t ± = 4 n τ s [ ( n + 1 ) 2 ( n 1 ) 2 τ s 2 + Z 0 σ ± 2 n ( n + 1 + ( n 1 ) τ s ) 2 ] 1 .

Metrics