Abstract

We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10−4 cm−1 was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample’s dimensions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. A-Hadron. Nucl.57, 739–746 (1929).
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
    [CrossRef]
  3. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
    [CrossRef] [PubMed]
  4. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron.35(1), 115–122 (1999).
    [CrossRef]
  5. G. Nemova and R. Kashyap, “Athermal continuous-wave fiber amplifier,” Opt. Commun.282(13), 2571–2575 (2009).
    [CrossRef]
  6. G. Nemova and R. Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B28(9), 2191–2194 (2011).
    [CrossRef]
  7. S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O'Connor, “Demonstration of a radiatively cooled laser,” in Summaries of PapersPresented at theConf. Lasers Electro-Opt., 2002)
  8. S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
    [CrossRef]
  9. J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
    [CrossRef] [PubMed]
  10. G. Nemova and R. Kashyap, “Laser cooling with lead-salt colloidal quantum dots doped in a glass host,” Proc. SPIE 8275, 82750B2-8275B8 (2012).
  11. G. Nemova, E. Soares de Lima Filho, S. Loranger, and R. Kashyap, “Laser cooling with nanoparticles,” Proc. SPIE 8412,84121P1–84121P14 (2012).
  12. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010).
    [CrossRef] [PubMed]
  13. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
    [CrossRef]
  14. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express17(7), 5466–5472 (2009).
    [CrossRef] [PubMed]
  15. V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013).
    [CrossRef]
  16. J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett.38(4), 422–424 (2013).
    [CrossRef] [PubMed]
  17. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin.133, 5–9 (2013).
    [CrossRef]
  18. D. Seletskiy, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K1-72280K5 (2009).
  19. E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
    [CrossRef]
  20. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21K starting from room temperature,” Opt. Lett.23(8), 639–641 (1998).
    [CrossRef] [PubMed]
  21. G. Nemova and R. Kashyap, “Optimization of the dimensions of an Yb3+:ZBLANP optical fiber sample for laser cooling of solids,” Opt. Lett.33(19), 2218–2220 (2008).
    [CrossRef] [PubMed]
  22. T. R. Gosnell, “Laser cooling of a solid by 65K starting from room temperature,” Opt. Lett.24(15), 1041–1043 (1999).
    [CrossRef] [PubMed]
  23. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics12(12), 693–699 (2007).
    [CrossRef]
  24. R. Kashyap and G. Nemova, “Laser induced cooling of solids,” Phys. Status Solidi C8(1), 144–150 (2011).
    [CrossRef]
  25. R. Siegel and J. R. Howell, Thermal Radiation Heat Tranfer, Series in Thermal and Fluids Engineering (Hemisphere Publishing Corporation / McGraw-Hill Book Company, 1981).
  26. D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron.47(1), 3–12 (2011).
    [CrossRef]
  27. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
    [CrossRef]
  28. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B71(6), 807–811 (2000).
    [CrossRef]
  29. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
    [CrossRef]
  30. M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
    [CrossRef]
  31. R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).
  32. D. Sengupta, M. S. Shankar, P. Kishore, P. S. Reddy, R. Prasad, P. V. Rao, and K. Srimannarayana, “An FBG sensor for strain and temperature discrimination at cryogenic regime,” in Asia Communications and Photonics Conference and Exhibition, (Optical Society of America, 2011), paper 831106. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2011-831106
    [CrossRef]
  33. P. Shi, B. Bai, L. Zhang, L. Li, and Y. Xin, “Semianalytical thermal analysis of the heat capacity of YAG laser rods,” Appl. Opt.48(35), 6701–6707 (2009).
    [CrossRef] [PubMed]
  34. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
    [CrossRef]
  35. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
    [CrossRef]
  36. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
    [CrossRef]
  37. D. T. Nguyen, R. Thapa, D. Rhonehouse, J. Zong, A. Miller, G. Hardesty, N. H. Kwong, R. Binder, and A. Chavez-Pirson, “Towards all-fiber optical coolers using Tm-doped glass fibers,” Proc. SPIE 8638, 86380G1–86380G9.
    [CrossRef]
  38. G. Nemova and R. Kashyap, “High efficiency solid state laser cooling in Yb3+:ZBLANP fiber with tilted fiber Bragg grating structures,” Phys. Status Solidi C6(S1), S248–S250 (2009).
    [CrossRef]
  39. G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B26(12), 2237–2241 (2009).
    [CrossRef]
  40. G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol.27(24), 5597–5601 (2009).
    [CrossRef]

2013 (5)

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin.133, 5–9 (2013).
[CrossRef]

J. R. Silva, L. C. Malacarne, M. L. Baesso, S. M. Lima, L. H. C. Andrade, C. Jacinto, M. P. Hehlen, and N. G. C. Astrath, “Modeling the population lens effect in thermal lens spectrometry,” Opt. Lett.38(4), 422–424 (2013).
[CrossRef] [PubMed]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

2011 (3)

G. Nemova and R. Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B28(9), 2191–2194 (2011).
[CrossRef]

R. Kashyap and G. Nemova, “Laser induced cooling of solids,” Phys. Status Solidi C8(1), 144–150 (2011).
[CrossRef]

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron.47(1), 3–12 (2011).
[CrossRef]

2010 (3)

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

2009 (6)

2008 (1)

2007 (1)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics12(12), 693–699 (2007).
[CrossRef]

2006 (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

2001 (2)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

2000 (1)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B71(6), 807–811 (2000).
[CrossRef]

1999 (2)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron.35(1), 115–122 (1999).
[CrossRef]

T. R. Gosnell, “Laser cooling of a solid by 65K starting from room temperature,” Opt. Lett.24(15), 1041–1043 (1999).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

1993 (2)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
[CrossRef]

1929 (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. A-Hadron. Nucl.57, 739–746 (1929).

Andrade, L. H. C.

Astrath, N. G. C.

Baesso, M. L.

Bai, B.

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

Biswal, S.

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Bogatyrenko, V. V.

V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013).
[CrossRef]

Bowman, S. R.

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B71(6), 807–811 (2000).
[CrossRef]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron.35(1), 115–122 (1999).
[CrossRef]

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

Brown, D. C.

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron.47(1), 3–12 (2011).
[CrossRef]

Brown, J. J.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Chen, R.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

Condon, N. J.

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

de Lima Filho, E.

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Di Lieto, A.

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

Edwards, B. C.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Eisaman, M. D.

Epstein, R. I.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin.133, 5–9 (2013).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics12(12), 693–699 (2007).
[CrossRef]

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

Gagné, M.

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

Gibbs, A.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
[CrossRef]

Gosnell, T. R.

Hehlen, M. P.

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Jacinto, C.

Kashyap, R.

R. Kashyap and G. Nemova, “Laser induced cooling of solids,” Phys. Status Solidi C8(1), 144–150 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B28(9), 2191–2194 (2011).
[CrossRef]

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

G. Nemova and R. Kashyap, “Athermal continuous-wave fiber amplifier,” Opt. Commun.282(13), 2571–2575 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “High efficiency solid state laser cooling in Yb3+:ZBLANP fiber with tilted fiber Bragg grating structures,” Phys. Status Solidi C6(S1), S248–S250 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol.27(24), 5597–5601 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B26(12), 2237–2241 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Optimization of the dimensions of an Yb3+:ZBLANP optical fiber sample for laser cooling of solids,” Opt. Lett.33(19), 2218–2220 (2008).
[CrossRef] [PubMed]

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Li, D.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

Li, L.

Lima, S. M.

Luo, X.

Malacarne, L. C.

Malyutenko, O. Y.

V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013).
[CrossRef]

Malyutenko, V. K.

V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
[CrossRef]

Melgaard, S. D.

Mungan, C. E.

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B71(6), 807–811 (2000).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Nemova, G.

G. Nemova and R. Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B28(9), 2191–2194 (2011).
[CrossRef]

R. Kashyap and G. Nemova, “Laser induced cooling of solids,” Phys. Status Solidi C8(1), 144–150 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B26(12), 2237–2241 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “High efficiency solid state laser cooling in Yb3+:ZBLANP fiber with tilted fiber Bragg grating structures,” Phys. Status Solidi C6(S1), S248–S250 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol.27(24), 5597–5601 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Athermal continuous-wave fiber amplifier,” Opt. Commun.282(13), 2571–2575 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Optimization of the dimensions of an Yb3+:ZBLANP optical fiber sample for laser cooling of solids,” Opt. Lett.33(19), 2218–2220 (2008).
[CrossRef] [PubMed]

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

O’Connor, S. P.

O'Connor, S. P.

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. A-Hadron. Nucl.57, 739–746 (1929).

Quimby, R. S.

Rosenberg, A.

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

Saad, M.

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

Seletskiy, D. V.

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin.133, 5–9 (2013).
[CrossRef]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics12(12), 693–699 (2007).
[CrossRef]

Shi, P.

Silva, J. R.

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Tonelli, M.

Vitali, V. A.

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron.47(1), 3–12 (2011).
[CrossRef]

Xin, Y.

Xiong, Q.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

Zhang, L.

Appl. Opt. (1)

Appl. Phys. B (1)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B71(6), 807–811 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

V. K. Malyutenko, V. V. Bogatyrenko, and O. Y. Malyutenko, “Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer,” Appl. Phys. Lett.102(24), 241102 (2013).
[CrossRef]

IEEE J. Quantum Electron. (6)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron.35(1), 115–122 (1999).
[CrossRef]

S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron.46(7), 1076–1085 (2010).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron.47(1), 3–12 (2011).
[CrossRef]

J. Appl. Phys. (1)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys.90(9), 4815–4819 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin.133, 5–9 (2013).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics12(12), 693–699 (2007).
[CrossRef]

Nature (2)

J. Zhang, D. Li, R. Chen, and Q. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Opt. Commun. (2)

G. Nemova and R. Kashyap, “Athermal continuous-wave fiber amplifier,” Opt. Commun.282(13), 2571–2575 (2009).
[CrossRef]

M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
[CrossRef]

Phys. Status Solidi C (2)

R. Kashyap and G. Nemova, “Laser induced cooling of solids,” Phys. Status Solidi C8(1), 144–150 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “High efficiency solid state laser cooling in Yb3+:ZBLANP fiber with tilted fiber Bragg grating structures,” Phys. Status Solidi C6(S1), S248–S250 (2009).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006).
[CrossRef]

Z. Phys. A-Hadron. Nucl. (1)

P. Pringsheim, “Zwei bemerkungen über den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. A-Hadron. Nucl.57, 739–746 (1929).

Other (9)

S. R. Bowman, N. W. Jenkins, B. Feldman, and S. O'Connor, “Demonstration of a radiatively cooled laser,” in Summaries of PapersPresented at theConf. Lasers Electro-Opt., 2002)

G. Nemova and R. Kashyap, “Laser cooling with lead-salt colloidal quantum dots doped in a glass host,” Proc. SPIE 8275, 82750B2-8275B8 (2012).

G. Nemova, E. Soares de Lima Filho, S. Loranger, and R. Kashyap, “Laser cooling with nanoparticles,” Proc. SPIE 8412,84121P1–84121P14 (2012).

R. Siegel and J. R. Howell, Thermal Radiation Heat Tranfer, Series in Thermal and Fluids Engineering (Hemisphere Publishing Corporation / McGraw-Hill Book Company, 1981).

D. Seletskiy, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K1-72280K5 (2009).

E. de Lima Filho, M. Gagné, G. Nemova, M. Saad, S. R. Bowman, and R. Kashyap, “Sensing of laser cooling with optical fibres,” in 7th International Workshop on Fibre Optics and Passive Components, (2011), pp. 1–5.
[CrossRef]

D. T. Nguyen, R. Thapa, D. Rhonehouse, J. Zong, A. Miller, G. Hardesty, N. H. Kwong, R. Binder, and A. Chavez-Pirson, “Towards all-fiber optical coolers using Tm-doped glass fibers,” Proc. SPIE 8638, 86380G1–86380G9.
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic Press, 2009).

D. Sengupta, M. S. Shankar, P. Kishore, P. S. Reddy, R. Prasad, P. V. Rao, and K. Srimannarayana, “An FBG sensor for strain and temperature discrimination at cryogenic regime,” in Asia Communications and Photonics Conference and Exhibition, (Optical Society of America, 2011), paper 831106. http://www.opticsinfobase.org/abstract.cfm?URI=ACP-2011-831106
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption (a) and emission (b) spectra of the Yb:YAG crystal. The inset in (a) is a zoomed-in detail of the most important wavelength region 850 nm to 1060 nm. (b) shows the normalized fluorescence spectral density, and the vertical dashed line shows the calculated mean fluorescence wavelength.

Fig. 2
Fig. 2

Experimental setup for laser heating and cooling measurements. The pump source used is a Ti:Sapphire laser or alternatively a Yb:KGW laser for higher power. The pump power is controlled by rotating a half-wave plate (HWP) before it is p-polarized in a Glan-Thompson prism (GTLp) and spatially filtered with a pin-hole (PH). A servo-motor controller (SRV) drives the TC and shutter position, and an electronic cold junction compensator (CJ) is used as a reference for the TC.

Fig. 3
Fig. 3

Measured reflection/transmission power spectra from the FBG before the cooling experiment, in red. In blue: representation of the shifted spectra after a temperature drop, and the corresponding power change measured by the power meters when the fiber is interrogated at a single wavelength λI (in green).

Fig. 4
Fig. 4

Cooling dynamics of the sample under CW . (a) Temperature dynamics as a function of time, as the laser power is switched on and off. (b) Fitted exponential curve (red) to a section of the item (a), when the laser switches on. The curves correspond to the axes of same color.

Fig. 5
Fig. 5

Temperature dynamics as the laser pump power is increased from 0 W up to 4.2 W. (a) The chamber temperature variation, measured by the thermocouple. (b) The difference between the temperature of the Yb:YAG crystal measured by the FBG and the chamber temperature.

Fig. 6
Fig. 6

Calculated steady-state temperature of Yb:YAG in air as a function of the sample edge dimension d. (a) For different EQEs, when pumped with 4.2 W at 1029 nm. (b) For a EQE = 0.9914, for different pump powers. In black: the optimal d for the corresponding pump power.

Tables (1)

Tables Icon

Table 1 Thermal parameters of the Yb:YAG crystal used in the experiment

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P cool = P pump [ 1exp( α r L s ) ]( η e α r α r + α b λ p λ f 1 ),
α r = N T [ σ a ( σ a + σ e ) ( 1+ σ e σ a + A eff I s P pump ) 1 ],
P load ( T s )= A surf ε σ B ( T r 4 T s 4 )+( h cv A surf +k A ct L )( T r T s ),

Metrics