Abstract

We demonstrate a photon-counting optical time-domain reflectometry with 42.19 dB dynamic range using an ultra-low noise up-conversion single photon detector. By employing the long-wave pump technique and a volume Bragg grating, we achieve a noise equivalent power of −139.7 dBm/ Hz for our detector. We perform the OTDR experiments using a fiber of length approximate 217 km, and show that our system can identify defects along the entire fiber length in a measurement time of 13 minutes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski and S. M. Jensen, “Fiber waveguides-novel technique for investigating attenuation characteristics,” Appl. Opt.15, 2112–2115 (1976).
    [CrossRef] [PubMed]
  2. S. D. Personick, “Photon probe-optical-fiber time-domain reflectometer,” Bell Syst. Tech. J.56, 355–366 (1977).
    [CrossRef]
  3. F. Scholder, J. D. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun.213, 57–61 (2002).
    [CrossRef]
  4. M. Wegmuller, F. Scholder, and N. Gisin, “Photon-counting OTDR for local birefringence and fault analysis in the metro environment,” J. Lightwave Technol.22, 390 (2004).
    [CrossRef]
  5. P. Eraerds, M. Legré, J. Zhang, H. Zbinden, and N. Gisin, “Photon counting OTDR: Advantages and limitations,” J. Lightwave Technol.28, 952–964 (2010).
    [CrossRef]
  6. E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, “1.5 μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide,” Opt. Lett.31, 727–729 (2006).
    [CrossRef] [PubMed]
  7. J. Hu, Q. Zhao, X. Zhang, L. Zhang, X. Zhao, L. Kang, and P. Wu, “Photon-counting optical time-domain reflectometry using a superconducting nanowire single-photon detector,” J. Lightwave Technol.30, 2583–2588 (2012).
    [CrossRef]
  8. C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
    [CrossRef]
  9. M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55 μ m up-conversion photon-counting module,” Opt. Express15, 8237–8242 (2007).
    [CrossRef]
  10. G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express21, 13986–13991 (2013).
    [CrossRef] [PubMed]
  11. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and Y. Yamamoto, “1.5- μ m single photon counting using polarization-independent up-conversion detector,” Opt. Express14, 13067–13072 (2006).
    [CrossRef] [PubMed]
  12. S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
    [CrossRef]

2013 (2)

C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
[CrossRef]

G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express21, 13986–13991 (2013).
[CrossRef] [PubMed]

2012 (1)

2010 (1)

2007 (2)

M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55 μ m up-conversion photon-counting module,” Opt. Express15, 8237–8242 (2007).
[CrossRef]

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
[CrossRef]

2006 (2)

2004 (1)

2002 (1)

F. Scholder, J. D. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun.213, 57–61 (2002).
[CrossRef]

1977 (1)

S. D. Personick, “Photon probe-optical-fiber time-domain reflectometer,” Bell Syst. Tech. J.56, 355–366 (1977).
[CrossRef]

1976 (1)

Barnoski, M. K.

Castelletto, S. A.

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
[CrossRef]

Degiovanni, I. P.

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
[CrossRef]

Diamanti, E.

Eraerds, P.

Fejer, M. M.

Gautier, J. D.

F. Scholder, J. D. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun.213, 57–61 (2002).
[CrossRef]

Gisin, N.

Hu, J.

Jensen, S. M.

Kang, L.

Langrock, C.

Legre, M.

Legré, M.

Ma, X.

C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
[CrossRef]

Migdall, A. L.

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
[CrossRef]

Pan, J.-W.

Pelc, J. S.

Pernice, W. H. P.

C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
[CrossRef]

Personick, S. D.

S. D. Personick, “Photon probe-optical-fiber time-domain reflectometer,” Bell Syst. Tech. J.56, 355–366 (1977).
[CrossRef]

Schettini, V.

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
[CrossRef]

Scholder, F.

M. Wegmuller, F. Scholder, and N. Gisin, “Photon-counting OTDR for local birefringence and fault analysis in the metro environment,” J. Lightwave Technol.22, 390 (2004).
[CrossRef]

F. Scholder, J. D. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun.213, 57–61 (2002).
[CrossRef]

Schuck, C.

C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
[CrossRef]

Shentu, G.-L.

Sun, Q.-C.

Takesue, H.

Tang, H. X.

C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
[CrossRef]

Thew, R.

Wang, X.-D.

Wegmuller, M.

M. Wegmuller, F. Scholder, and N. Gisin, “Photon-counting OTDR for local birefringence and fault analysis in the metro environment,” J. Lightwave Technol.22, 390 (2004).
[CrossRef]

F. Scholder, J. D. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun.213, 57–61 (2002).
[CrossRef]

Wu, P.

Yamamoto, Y.

Zbinden, H.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhang, X.

Zhao, Q.

Zhao, X.

Zheng, M.-Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Schuck, W. H. P. Pernice, X. Ma, and H. X. Tang, “Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors,” Appl. Phys. Lett.102, 191104 (2013).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Personick, “Photon probe-optical-fiber time-domain reflectometer,” Bell Syst. Tech. J.56, 355–366 (1977).
[CrossRef]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

S. A. Castelletto, I. P. Degiovanni, V. Schettini, and A. L. Migdall, “Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array,” J. Mod. Opt.54, 337–352 (2007)
[CrossRef]

Opt. Commun. (1)

F. Scholder, J. D. Gautier, M. Wegmuller, and N. Gisin, “Long-distance OTDR using photon counting and large detection gates at telecom wavelength,” Opt. Commun.213, 57–61 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. ASG: analog signal generator, PPG: pulse pattern generator, PFG: pulse function arbitrary noise generator, TCSPC: time correlated single-photon counting system, VATT: variable optical attenuator, Circ: optical circulator, FUT: fiber under test, DM: dichroic mirror, PC: polarization controller, SPF: 945 nm short pass filter, BPF: 857 nm band pass filter, VBG: volume Bragg grating.

Fig. 2
Fig. 2

Measurement of optical fiber of 217 km length performed by our ν-OTDR system. The pulse width is 1 μs. N is the counts of back scattered photons, N0 is the count at the the initial point of the trace. The blue trace and violet trace are obtained in the first step and the second step of measurement, respectively. The position of the two peaks, 108.47203 km and 216.95422 km, coincides with the length of the two fiber spools. The black horizontal line shows the RMS noise level of the trace,which is about −39.19 dB. The intersection and slope of the extrapolated trace (red line) are 3 dB and 0.195 dB/km, respectively. The inset shows the comparison between the corrected trace (green) and the trace measured directly (blue).

Fig. 3
Fig. 3

Counts of last reflection peaks of ν-OTDR trace of the 217 km fiber (blue line) and after the 20 cm fiber is cut off at the end (green line), which are represented by the right y-axis and left y-axis, respectively. The amplitude of the two peaks are different because the cutting surfaces of fiber end are not identical. The inset shows the enlarged view of the leading edge of the two peaks.

Metrics