Abstract

We describe a method for measuring small fluctuations in the intensity of a laser source with a resolution of 10−4. The current signal generated by a PIN diode is passed to a front-end electronics that discriminates the AC from the DC components, which are physically separated and propagated along circuit paths with different gains. The gain long the AC signal path is set one order of magnitude larger than that along the DC signal path in such a way to optimize the measurement dynamic range. We then derive the relative fluctuation signal by normalizing the input-referred AC signal component to its input-referred DC counterpart. In this way the fluctuation of the optical signal waveform relative to the mean power of the laser is obtained. A “Noise-Scattering-Pattern method” and a “Signal-Power-Spectrum method” are then used to analyze the intensity fluctuations from three different solid-state lasers. This is a powerful tool for the characterization of the intensity stability of lasers. Applications are discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berne and R. Pecora, Dynamic Light Scattering (Dover N.Y. 2000)
  2. M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
    [CrossRef] [PubMed]
  3. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer 2006)
  4. B. Y. H. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ.8(7), 717–732 (1974).
    [CrossRef]
  5. Y. Liu and P. H. Daum, “The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters,” J. Aerosol Sci.31(8), 945–957 (2000).
    [CrossRef]
  6. G. H. M. van Tartwijk and G. P Agrawal “Laser instabilities: a modern perspective,” Prog. Quantum Electron.22(2), 43–122 (1998).
    [CrossRef]
  7. W. Van der Graaf, L. Pesquera, and D. Lenstra, “Stability and noise properties of diode lasers with phase conjugate feedback,” IEEE J. Quantum Electron.37(4), 562–573 (2001).
    [CrossRef]
  8. V. Degiorgio, “The laser instability,” Phys. Today29(10), 42–44 (1976).
    [CrossRef]
  9. A. Konczakowska, J. Cichosz, and A. Szewczyk, “A new method for RTS noise of semiconductor devices identification,” IEEE Trans. Instrum. Meas.57(6), 1199–1206 (2008).
    [CrossRef]
  10. A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
    [CrossRef] [PubMed]

2012 (1)

A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
[CrossRef] [PubMed]

2010 (1)

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

2008 (1)

A. Konczakowska, J. Cichosz, and A. Szewczyk, “A new method for RTS noise of semiconductor devices identification,” IEEE Trans. Instrum. Meas.57(6), 1199–1206 (2008).
[CrossRef]

2001 (1)

W. Van der Graaf, L. Pesquera, and D. Lenstra, “Stability and noise properties of diode lasers with phase conjugate feedback,” IEEE J. Quantum Electron.37(4), 562–573 (2001).
[CrossRef]

2000 (1)

Y. Liu and P. H. Daum, “The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters,” J. Aerosol Sci.31(8), 945–957 (2000).
[CrossRef]

1998 (1)

G. H. M. van Tartwijk and G. P Agrawal “Laser instabilities: a modern perspective,” Prog. Quantum Electron.22(2), 43–122 (1998).
[CrossRef]

1976 (1)

V. Degiorgio, “The laser instability,” Phys. Today29(10), 42–44 (1976).
[CrossRef]

1974 (1)

B. Y. H. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ.8(7), 717–732 (1974).
[CrossRef]

Agarwal, J. K.

B. Y. H. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ.8(7), 717–732 (1974).
[CrossRef]

Alaimo, M. D.

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

Berglund, R. N.

B. Y. H. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ.8(7), 717–732 (1974).
[CrossRef]

Cichosz, J.

A. Konczakowska, J. Cichosz, and A. Szewczyk, “A new method for RTS noise of semiconductor devices identification,” IEEE Trans. Instrum. Meas.57(6), 1199–1206 (2008).
[CrossRef]

Daum, P. H.

Y. Liu and P. H. Daum, “The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters,” J. Aerosol Sci.31(8), 945–957 (2000).
[CrossRef]

Degiorgio, V.

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

V. Degiorgio, “The laser instability,” Phys. Today29(10), 42–44 (1976).
[CrossRef]

Giglio, M.

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

Konczakowska, A.

A. Konczakowska, J. Cichosz, and A. Szewczyk, “A new method for RTS noise of semiconductor devices identification,” IEEE Trans. Instrum. Meas.57(6), 1199–1206 (2008).
[CrossRef]

Lenstra, D.

W. Van der Graaf, L. Pesquera, and D. Lenstra, “Stability and noise properties of diode lasers with phase conjugate feedback,” IEEE J. Quantum Electron.37(4), 562–573 (2001).
[CrossRef]

Liu, B. Y. H.

B. Y. H. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ.8(7), 717–732 (1974).
[CrossRef]

Liu, Y.

Y. Liu and P. H. Daum, “The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters,” J. Aerosol Sci.31(8), 945–957 (2000).
[CrossRef]

P Agrawal, G.

G. H. M. van Tartwijk and G. P Agrawal “Laser instabilities: a modern perspective,” Prog. Quantum Electron.22(2), 43–122 (1998).
[CrossRef]

Pesquera, L.

W. Van der Graaf, L. Pesquera, and D. Lenstra, “Stability and noise properties of diode lasers with phase conjugate feedback,” IEEE J. Quantum Electron.37(4), 562–573 (2001).
[CrossRef]

Potenza, M. A.

A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
[CrossRef] [PubMed]

Potenza, M. A. C.

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

Pullia, A.

A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
[CrossRef] [PubMed]

Sanvito, T.

A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
[CrossRef] [PubMed]

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

Szewczyk, A.

A. Konczakowska, J. Cichosz, and A. Szewczyk, “A new method for RTS noise of semiconductor devices identification,” IEEE Trans. Instrum. Meas.57(6), 1199–1206 (2008).
[CrossRef]

Van der Graaf, W.

W. Van der Graaf, L. Pesquera, and D. Lenstra, “Stability and noise properties of diode lasers with phase conjugate feedback,” IEEE J. Quantum Electron.37(4), 562–573 (2001).
[CrossRef]

van Tartwijk, G. H. M.

G. H. M. van Tartwijk and G. P Agrawal “Laser instabilities: a modern perspective,” Prog. Quantum Electron.22(2), 43–122 (1998).
[CrossRef]

Zocca, F.

A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
[CrossRef] [PubMed]

Atmos. Environ. (1)

B. Y. H. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ.8(7), 717–732 (1974).
[CrossRef]

Eur Phys J E Soft Matter (1)

M. A. C. Potenza, T. Sanvito, M. D. Alaimo, V. Degiorgio, and M. Giglio, “Confocal zero-angle dynamic depolarized light scattering,” Eur Phys J E Soft Matter31(1), 69–72 (2010).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. Van der Graaf, L. Pesquera, and D. Lenstra, “Stability and noise properties of diode lasers with phase conjugate feedback,” IEEE J. Quantum Electron.37(4), 562–573 (2001).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Konczakowska, J. Cichosz, and A. Szewczyk, “A new method for RTS noise of semiconductor devices identification,” IEEE Trans. Instrum. Meas.57(6), 1199–1206 (2008).
[CrossRef]

J. Aerosol Sci. (1)

Y. Liu and P. H. Daum, “The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters,” J. Aerosol Sci.31(8), 945–957 (2000).
[CrossRef]

Phys. Today (1)

V. Degiorgio, “The laser instability,” Phys. Today29(10), 42–44 (1976).
[CrossRef]

Prog. Quantum Electron. (1)

G. H. M. van Tartwijk and G. P Agrawal “Laser instabilities: a modern perspective,” Prog. Quantum Electron.22(2), 43–122 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Pullia, T. Sanvito, M. A. Potenza, and F. Zocca, “A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes,” Rev. Sci. Instrum.83(10), 104704 (2012).
[CrossRef] [PubMed]

Other (2)

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer 2006)

B. Berne and R. Pecora, Dynamic Light Scattering (Dover N.Y. 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental results for the fast components as measured for spheres of 430 nm in diameter. (1) AC signals obtained for laser power ranging from 10 mW to 150 mW. (2) Peak signal current vs DC current i.e. laser power. As can be seen the signal height grows linearly with the laser intensity.

Fig. 2
Fig. 2

Simplified schematic diagram of the preamplifier. Fluctuations are read at pin 3. The mean DC signal is read at pin 5.

Fig. 3
Fig. 3

SPS analysis example. (1) digitization unit noise; (2) hardware connected to the digitization unit, all hardware is switched off; (3) QPD and FE electronics switched on, laser switched off; (4) laser switched on.

Fig. 4
Fig. 4

AC signals and NSP patterns for the three sources studied in the present work. A1, A2, A3 are non-stationary behaviors of the lasing mode of A. The rms signal measured in the three lasing modes are σ1 = 1.2 × 10−3, σ2 = 1.7 × 10−3 and σ3 = 1.8 × 10−3 . The highly non-stable lasing mode of A is also characterized by a non-Gaussian noise, as the NSP pattern clearly shows in panel A4. In panels B1 and B2 the AC signal of B and the corresponding NSP pattern are shown. The noise is Gaussian and the rms is σ4 = 2.3 × 10−4. In panels C1 and C2 the AC signal of C and the corresponding NSP pattern are shown. The noise is Gaussian and the rms is σ4 = 5.5 × 10−4.

Fig. 5
Fig. 5

Power spectra of the three sources studied in the present work.

Tables (1)

Tables Icon

Table 1 Laser model/producer, maximum optical power, wavelength, presence of a stabilized power supply and/or a temperature controller driver.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S(f)= | F{ i AC i DC } | 2 ,
σ 2 = S(f)df .

Metrics