Abstract

A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly. We utilized such a configuration to achieve ultra-long-distance distributed sensing based on Brillouin optical time-domain analysis (BOTDA). A repeater-less sensing distance record of up to 154.4km with 5m spatial resolution and ~ ± 1.4°C temperature uncertainty is successfully demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
    [CrossRef]
  2. A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
    [CrossRef]
  3. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
    [CrossRef]
  4. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
    [CrossRef]
  5. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
    [CrossRef] [PubMed]
  6. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
    [CrossRef] [PubMed]
  7. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
    [CrossRef] [PubMed]
  8. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
    [CrossRef] [PubMed]
  9. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
    [CrossRef] [PubMed]
  10. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
    [CrossRef] [PubMed]
  11. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express21(14), 16466–16472 (2013).
    [CrossRef] [PubMed]
  12. Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012).
    [CrossRef]
  13. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
    [CrossRef] [PubMed]
  14. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
    [CrossRef] [PubMed]
  15. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
    [CrossRef] [PubMed]
  16. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
    [CrossRef] [PubMed]
  17. X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
    [CrossRef] [PubMed]
  18. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
    [CrossRef]
  19. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
    [CrossRef]
  20. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28(21), 3149–3155 (2010).
  21. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
    [CrossRef]
  22. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
    [CrossRef]
  23. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
    [CrossRef] [PubMed]
  24. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010).
    [CrossRef] [PubMed]
  25. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  26. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
    [CrossRef] [PubMed]
  27. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
    [CrossRef] [PubMed]
  28. X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
    [CrossRef]
  29. X. Angulo-Vinuesa, M. A. Soto, S. Martin-Lopez, S. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Brillouin optical time-domain analysis over a 240 km-long fiber loop with no repeater,” OFS 2012, Proc. SPIE 8421, 8421C9 (2012).
  30. C. Headly and G. P. Agrawal, Raman Amplifiers in Fiber Optical Communication System (Elsevier, 2005).
  31. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

2013 (3)

2012 (10)

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012).
[CrossRef]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012).
[CrossRef]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

2011 (8)

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

2010 (7)

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010).
[CrossRef] [PubMed]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28(21), 3149–3155 (2010).

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Abu Bakar, M. H.

Adikan, F. R. M.

Alcon-Camas, M.

Ania-Castanon, J. D.

Ania-Castañón, J. D.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Babin, S. A.

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Bakar, A. A. A.

Bao, X.

Bernini, R.

Bolognini, G.

Chen, L.

Churkin, D. V.

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express21(14), 16466–16472 (2013).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Deng, K.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

Di Pasquale, F.

Dong, Y.

El-Taher, A. E.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

Fotiadi, A. A.

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
[CrossRef]

Frazão, O.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28(21), 3149–3155 (2010).

Harper, P.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Jia, X. H.

X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

Jiang, Y.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Karalekas, V.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Kobelke, J.

Li, P. Y.

Li, W.

Liang, H.

Linze, N.

Lopez-Amo, M.

Mahdi, M. A.

Marques, M. B.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

Martins, H. F.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

Minardo, A.

Nuño, J.

Peng, F.

Pinto, A. M. R.

Podivilov, E. V.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

Ran, Z. L.

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

Rao, Y. J.

X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28(21), 3149–3155 (2010).

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

Sarmani, A. R.

Schuster, K.

Shu, X.

Soto, M. A.

Sugavanam, S.

Tarasov, N.

Turitsyn, S. K.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

Vatnik, I. D.

Wang, Z. N.

X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

Wu, H.

Wu, H. J.

Yang, Z. X.

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

Zeni, L.

Zhang, W. L.

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

Zhu, J. M.

Zhu, Y. Y.

Appl. Phys. B (2)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010).
[CrossRef]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. (1)

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Z. L. Ran, K. Deng, and Z. X. Yang, “Theoretical investigations on the non-local effect in a long-distance Brillouin optical time-domain analyzer based on bi-directional Raman amplification,” J. Opt.14(4), 045202 (2012).
[CrossRef]

Nat. Photonics (2)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics4(4), 231–235 (2010).
[CrossRef]

A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010).
[CrossRef]

Opt. Express (13)

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011).
[CrossRef] [PubMed]

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012).
[CrossRef] [PubMed]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012).
[CrossRef] [PubMed]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012).
[CrossRef] [PubMed]

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012).
[CrossRef] [PubMed]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012).
[CrossRef] [PubMed]

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012).
[CrossRef] [PubMed]

X. H. Jia, Y. J. Rao, F. Peng, Z. N. Wang, W. L. Zhang, H. J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013).
[CrossRef] [PubMed]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013).
[CrossRef] [PubMed]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express21(14), 16466–16472 (2013).
[CrossRef] [PubMed]

Opt. Lett. (4)

Photon. Sens. (1)

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens.2(2), 97–117 (2012).
[CrossRef]

Phys. Rev. A (2)

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011).
[CrossRef]

Proc. SPIE (1)

X. H. Jia, Y. J. Rao, Z. N. Wang, W. L. Zhang, Y. Jiang, J. M. Zhu, and Z. X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” OFS 2012, Proc. SPIE8421(842127), 842127 (2012).
[CrossRef]

Other (3)

X. Angulo-Vinuesa, M. A. Soto, S. Martin-Lopez, S. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Brillouin optical time-domain analysis over a 240 km-long fiber loop with no repeater,” OFS 2012, Proc. SPIE 8421, 8421C9 (2012).

C. Headly and G. P. Agrawal, Raman Amplifiers in Fiber Optical Communication System (Elsevier, 2005).

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle and experimental setup of proposed H-DRA formed by RFL and 1st-order pumps. DFB-LD: Distributed feedback laser diode; WDM: Wavelength-division-multiplexer; SMF: Single-mode fiber; ISO: Optical isolator; OTDR: Optical time-domain reflectometry; OSA: Optical spectrum analyzer.

Fig. 2
Fig. 2

Variation of on-off gain with the input power of primary pump for different pumping configurations. For the proposed H-DRA, the 1st-order pump is fixed at 26dBm, and the power level of 1366nm pump is adjusted.

Fig. 3
Fig. 3

Gain distribution under various on-off gains for the proposed hybrid pumping (a) and bi-directional 1st-order pumping (b).

Fig. 4
Fig. 4

Variation of ENF (a) and ratio of path-averaged optical power (b) with on-off gains for different pumping configurations.

Fig. 5
Fig. 5

Experimental setup of ultra-long-distance BOTDA assisted by H-DRA incorporating RFL and 1st-order pumps. FRL: High-power fiber Raman laser; LD: Laser diode; PBC: Polarization beam combiner; AOM: Acoustic-optic modulator; EOM: Electro-optic modulator; AOFS: Acoustic-optic frequency shifter; EDFA: Erbium-doped fiber amplifiers; VOA: Variable optical attenuator; CIR: Circulator; FBG: Fiber Bragg grating; ISO: Optical isolator; PC: Polarization controller; PS: Polarization-scrambler; AWG: Arbitrary waveform generator; PD: Photo detector; DAQ: Data acquisition device. The dotted line is the sync signal.

Fig. 6
Fig. 6

(a) Decoded BGS as function of distance and frequency shift for 110-154.4km. (b) Decoded BGS at various fiber positions. The FWHM of BGS is given in the inset of (b).

Fig. 7
Fig. 7

(a) Extracted temperature distribution along sensing fiber. (b) Details of extracted temperature distribution around 5m hot-spot.

Metrics