Abstract

We investigate the optical behaviors of metallic nanoparticle (MNP) chains supporting localized surface plasmon (LSP) for different distances between particles. MNPs are excited through the fundamental TE mode of a silicon waveguide. Finite difference time domain (FDTD) calculations and optical power transmission measurements reveal three different behaviors. For short distances between particles, dipolar coupling occurs, and the MNP chain behaves as a waveguide. For the longest distances, nanoparticles are uncoupled, and the MNP chain acts as a LSP Bragg grating. Finally, for intermediate distances, we observe one behavior at a time, i.e. dipolar coupling or LSP Bragg reflection. There is only a small range of wavelengths within which both behaviors can coexist.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater.16(19), 1685–1706 (2004).
    [CrossRef]
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
    [CrossRef] [PubMed]
  3. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
    [CrossRef]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998).
    [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  6. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004).
    [CrossRef]
  7. A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006).
    [CrossRef]
  8. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express15(26), 17482–17493 (2007).
    [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  10. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
    [CrossRef] [PubMed]
  11. M. Sandtke and L. Kuipers, “Spatial distribution and near-field coupling of surface plasmon polariton Bloch modes,” Phys. Rev. B77(23), 235439 (2008).
    [CrossRef]
  12. J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
    [CrossRef] [PubMed]
  13. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
    [CrossRef]
  14. M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
    [CrossRef]
  15. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
    [CrossRef] [PubMed]
  16. A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
    [CrossRef] [PubMed]
  17. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
    [CrossRef]
  18. M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
    [CrossRef]

2013

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

2012

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

2008

M. Sandtke and L. Kuipers, “Spatial distribution and near-field coupling of surface plasmon polariton Bloch modes,” Phys. Rev. B77(23), 235439 (2008).
[CrossRef]

2007

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express15(26), 17482–17493 (2007).
[CrossRef] [PubMed]

2006

A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006).
[CrossRef]

2005

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

2004

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004).
[CrossRef]

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
[CrossRef]

2003

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

2001

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

1999

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

1998

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Apuzzo, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Aussenegg, F. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998).
[CrossRef] [PubMed]

Blaize, S.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Bleuel, T.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Bouville, D.

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Bruyant, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

Chelnokov, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Colas des Francs, G.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

Crozier, K. B.

Dagens, B.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Dereux, A.

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Engelen, R. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Fevrier, M.

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Février, M.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Fischer, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Forchel, A.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004).
[CrossRef]

Francs, G. C.

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Gersen, H.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Girard, C.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Gogol, P.

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Grandidier, J.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Hofmann, J.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Kamp, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koenderink, A.

A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998).
[CrossRef] [PubMed]

Kuipers, L.

M. Sandtke and L. Kuipers, “Spatial distribution and near-field coupling of surface plasmon polariton Bloch modes,” Phys. Rev. B77(23), 235439 (2008).
[CrossRef]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Leitner, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998).
[CrossRef] [PubMed]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Lérondel, G.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Markey, L.

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

Massenot, S.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

Megy, R.

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Polman, A.

A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006).
[CrossRef]

Quidant, R.

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
[CrossRef]

Quinten, M.

Reinhard, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Reithmaier, J. P.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Salas-Montiel, R.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

Sandtke, M.

M. Sandtke and L. Kuipers, “Spatial distribution and near-field coupling of surface plasmon polariton Bloch modes,” Phys. Rev. B77(23), 235439 (2008).
[CrossRef]

Schäfer, F.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Schider, G.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Simsek, E.

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Togan, E.

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004).
[CrossRef]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
[CrossRef]

Yang, T.

Adv. Mater.

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater.16(19), 1685–1706 (2004).
[CrossRef]

Appl. Phys. A.

M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012).
[CrossRef]

Nano Lett.

J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013).
[CrossRef] [PubMed]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001).
[CrossRef]

Phys. Rev. B

R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004).
[CrossRef]

A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006).
[CrossRef]

M. Sandtke and L. Kuipers, “Spatial distribution and near-field coupling of surface plasmon polariton Bloch modes,” Phys. Rev. B77(23), 235439 (2008).
[CrossRef]

Phys. Rev. Lett.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005).
[CrossRef] [PubMed]

Sci. Am.

H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic view of the investigated structure. (b) Picture showing the ellipsoidal shape of gold nanoparticles with D1 (respectively D2) the long (respectively small) axis size and d the center-to-center distance between particles.

Fig. 2
Fig. 2

Top: scanning electron microscope image of gold nanoparticles deposited on top of SOI waveguide with d = 150 nm (a) and d = 1µm (b). Middle: normalized transmission spectra of the SOI waveguide with gold nanoparticles deposited on top for d = 150 nm (c) and d = 1µm (d), respectively. Blue lines are for measurements, blue dash curves are for FDTD calculations. Bottom: calculated re〉ection (red) and transmission (blue) spectra for d = 150 nm (e) and d = 1µm (f), respectively.

Fig. 3
Fig. 3

Maps of the electric field (|Ey|) calculated in the vertical symmetry plane of the structure with d = 150 nm for four wavelengths: 1250 nm (a), 1321 nm (b), 1370 nm (c) and 1450 nm (d).

Fig. 4
Fig. 4

Maps of the electric field (|Ey|) calculated in the vertical symmetry plane of the structure with d = 1µm for four wavelengths: 1337 nm (a), 1500 nm (b), 1572 nm (c) and 1600 nm (d).

Fig. 5
Fig. 5

Dispersion curves of supermodes extracted from the spatial Fourier transform of the complex electric field (|Ey|) calculated in the mid-plane of the MNP chain along the z axis. Black lines delimit the light cone in air. Black dashed curves are light lines for Si and SiO2. White dashed lines are the dispersion curves of the fundamental TE mode of the Si waveguide. Figure (a) is for d = 150 nm, figures (b) and (c) are for d = 1µm.

Fig. 6
Fig. 6

Calculated re〉ection (red) and transmission (blue) spectra for d = 300 nm.

Fig. 7
Fig. 7

Maps of the electric field (|Ey|) calculated in the vertical symmetry plane of the structure for four wavelengths:1350 nm (a), 1450 nm (b), 1495 (c) and 1550 nm (d).

Fig. 8
Fig. 8

(a) Dispersion curves of supermodes extracted from the spatial Fourier transform of the complex electric field (|Ey|) calculated in the mid-plane of the MNP chain along the z axis. Black lines delimit the light cone in air. Black dashed curves are light lines for Si and SiO2. White dashed lines are the dispersion curves of the fundamental TE mode of the Si waveguide. (b), (c) and (d): Spatial distributions and effective refractive indexes of supermodes revealed by the spatial Fast Fourier Transform (FFT) of the complex electric field Ey at 1375 nm (ω = 1.37 × 1015 rad/s) (b), at 1495 nm (ω = 1.26 × 1015 rad/s) (c) and at 1550 nm (ω = 1.215 × 1015 rad/s) (d). Bottom figures in (b), (c) and (d) show exploded views of supermode field distributions for positive wavevectors (k// = 2π neff /λ ≥ 0).

Metrics