Abstract

One- and two-dimensional plasmonic nanostructures can be fabricated using nanoscale tensile stress. A polymer layer, coated with a thin metal film, is exposed to an interference pattern produced by ultraviolet laser beams. Crosslinking is induced between the polymeric molecules located within the bright fringes. This process not only increases the refractive index but also reduces the polymer layer thickness. Corrugations occur on the continuous thin metal film due to the nanoscale stress in the polymer layer. Thus, a periodic nanostructure of area 3 × 3 mm and depth 50 nm is created both in the polymer and metal films with excellent homogeneity and reproducibility. This method enables direct writing of a large-area plasmonic nanostructure at low cost which can be used in the design of optoelectronic devices and sensors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  2. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  3. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
    [CrossRef] [PubMed]
  4. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007).
    [CrossRef]
  5. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  6. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  8. Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. P. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express21(9), 11315–11321 (2013).
    [CrossRef] [PubMed]
  9. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
    [CrossRef] [PubMed]
  10. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
    [CrossRef] [PubMed]
  11. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009).
    [CrossRef] [PubMed]
  12. M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
    [CrossRef] [PubMed]
  13. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
    [CrossRef] [PubMed]
  14. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
    [CrossRef]
  15. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010).
    [CrossRef] [PubMed]
  16. V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express13(15), 5669–5675 (2005).
    [CrossRef] [PubMed]
  17. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
    [CrossRef] [PubMed]
  18. X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
    [CrossRef]
  19. U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
    [CrossRef]
  20. W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004).
    [CrossRef]
  21. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
    [CrossRef] [PubMed]
  22. H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
    [CrossRef]
  23. C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990).
    [CrossRef]
  24. B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
    [CrossRef]
  25. T. Zhai and X. Zhang, “Gain-and feedback-channel matching in lasers based on radiative-waveguide gratings,” Appl. Phys. Lett.101(14), 143507 (2012).
    [CrossRef]
  26. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  27. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001).
    [CrossRef] [PubMed]
  28. S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
    [CrossRef]
  29. X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
    [CrossRef]

2013 (1)

2012 (4)

S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
[CrossRef]

T. Zhai and X. Zhang, “Gain-and feedback-channel matching in lasers based on radiative-waveguide gratings,” Appl. Phys. Lett.101(14), 143507 (2012).
[CrossRef]

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
[CrossRef]

2011 (3)

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

2010 (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
[CrossRef]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010).
[CrossRef] [PubMed]

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

2009 (1)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009).
[CrossRef] [PubMed]

2008 (2)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

2006 (1)

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

2005 (3)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express13(15), 5669–5675 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

2004 (2)

W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (2)

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

2001 (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

1990 (1)

C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

Bunning, T. J.

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

Cao, T.

W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004).
[CrossRef]

Chang, C. A.

C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Dou, F.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
[CrossRef] [PubMed]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Elezzabi, A. Y.

Fan, S.

Feng, S.

S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009).
[CrossRef] [PubMed]

Friend, R.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
[CrossRef]

Friend, R. H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Ge, M.

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Gray, S. K.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Guo, H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Han, Z.

Hawker, C. J.

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hua, F.

Jeong, U.

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Jun Huang, T.

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

Jun Liu, Y.

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

Kim, D.

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

Kim, J.

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

Kim, K. S.

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

Kim, Y. K.

C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990).
[CrossRef]

Klar, P. J.

S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
[CrossRef]

Krishna Juluri, B.

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Le, A. P.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Lee, H. M.

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Li, H.

X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
[CrossRef]

Li, J.

S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
[CrossRef]

Lin, Y.

Linden, S.

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Liu, H.

Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. P. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express21(9), 11315–11321 (2013).
[CrossRef] [PubMed]

X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
[CrossRef]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009).
[CrossRef] [PubMed]

Lu, M.

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Ma, Q.

Ma, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Mack, N. H.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

Malyarchuk, V.

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

Moore, J. S.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007).
[CrossRef]

Nau, D.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nuzzo, R. G.

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
[CrossRef] [PubMed]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Requicha, A. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Rogers, J. A.

Russell, T. P.

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

Ryu, D.

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

Sahu, B.

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Schrott, A.

C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Sun, B.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Tarakeshwar, P.

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

Tétreault, N.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
[CrossRef]

Van, V.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Velasquez, V. T.

Veronis, G.

Wang, L.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Welland, M.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
[CrossRef]

Wenger, B.

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
[CrossRef]

White, J. M.

W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004).
[CrossRef]

White, J. O.

Yao, J.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Zhai, T.

Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. P. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express21(9), 11315–11321 (2013).
[CrossRef] [PubMed]

X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
[CrossRef]

T. Zhai and X. Zhang, “Gain-and feedback-channel matching in lasers based on radiative-waveguide gratings,” Appl. Phys. Lett.101(14), 143507 (2012).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

Zhang, X.

T. Zhai and X. Zhang, “Gain-and feedback-channel matching in lasers based on radiative-waveguide gratings,” Appl. Phys. Lett.101(14), 143507 (2012).
[CrossRef]

X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
[CrossRef]

S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Zhang, X. P.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhao, P.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Zhao, W.

W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004).
[CrossRef]

Zhao, Y.

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Adv. Funct. Mater. (2)

W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004).
[CrossRef]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011).
[CrossRef]

Adv. Mater. (5)

U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003).
[CrossRef]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011).
[CrossRef] [PubMed]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001).
[CrossRef]

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010).
[CrossRef]

T. Zhai and X. Zhang, “Gain-and feedback-channel matching in lasers based on radiative-waveguide gratings,” Appl. Phys. Lett.101(14), 143507 (2012).
[CrossRef]

J. Appl. Phys. (1)

M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012).
[CrossRef] [PubMed]

J. Nanophotonics (1)

S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012).
[CrossRef]

J. Phys. Chem. B (1)

H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003).
[CrossRef]

J. Vac. Sci. Technol. A (1)

C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990).
[CrossRef]

Macromol. Chem. Phys. (1)

X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012).
[CrossRef]

Nano Lett. (4)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011).
[CrossRef] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the nanoscale tensile stress induced plasmonic nanostructure. (a) ITO glass substrate coated with F8BT and metal layers. (b) The sample is exposed to a two-beam interference pattern with an included angle α1, forming a pattern with period Λ1. The nanoscale tensile stress distribution in the polymer layer is marked by the red arrows. The length of the red arrows denotes the magnitude of the nanoscale stress. (c) The plasmonic nanostructure after interference crosslinking. The insets depict uncrosslinked (left) and crosslinked (right) polymer molecule networks

Fig. 2
Fig. 2

AFM images of the one- and two-dimensional gold nanostructure achieved using interference crosslinking. Λ1 = 350 nm. Scale bar in the insets, 100 nm.

Fig. 3
Fig. 3

Nanostructures formed by metals with different ductility. (a) Gold nanograting. (b) Al nanograting.

Fig. 4
Fig. 4

Extinction and PL spectra of the uncrosslinked/crosslinked gold structure shown in Fig. 1(a) and (b). The inset depicts the measuring setup.

Fig. 5
Fig. 5

Angle-resolved tuning properties of the waveguide mode of the gold nanogratings based on interference crosslinking. (a) TM polarization. (b) TE polarization. The angle changes from 0 to 24° with a step of 2°. The insets show the enlarged view of the dip/peak in the spectra.

Fig. 6
Fig. 6

Cross-sectional SEM image of the sample shown in Fig. 2(a). The left inset presents the top view of the sample. The red circle denotes the cracks. Scale bar = 1 μm. The right inset is the enlarged view of the sample. White lines denote grating ridges. The thickness of the grating ridge/valley is roughly indicated by red/blue arrows. Scale bar = 400 nm.

Metrics