Abstract

Current experiments of processing glass with ultra-short laser pulses (< 1 ps) lead to scan angle depending processing results. This scan angle depending effect is examined by simulations of a common focusing lens for laser scanners. Due to dispersion, focusing lenses may cause pulse deformations and increase the pulse duration in the focal region. If the field angle of the incoming laser beam is variable, the pulse deformation may also vary as a function of the field angle. By ray tracing as well as wave optical simulations we investigate pulse deformations of optical systems for different scan angles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gottmann, M. Hermans, and J. Ortmann, “Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE),” J. Laser Micro Nanoeng.8, 15–18 (2013).
  2. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
    [CrossRef]
  3. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
    [CrossRef]
  4. P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
    [CrossRef] [PubMed]
  5. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett.14(2), 119–121 (1989).
    [CrossRef] [PubMed]
  6. L. L. C. Radiant Zemax, Zemax 13, http://www.radiantzemax.com .
  7. LightTrans GmbH, VirtualLabTM, http://www.lighttrans.com .
  8. Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun.94(4), 249–258 (1992).
    [CrossRef]

2013

J. Gottmann, M. Hermans, and J. Ortmann, “Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE),” J. Laser Micro Nanoeng.8, 15–18 (2013).

2011

2008

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

2007

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

1992

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun.94(4), 249–258 (1992).
[CrossRef]

1989

Akturk, S.

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Beresna, M.

Bor, Z.

Bor, Zs.

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun.94(4), 249–258 (1992).
[CrossRef]

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Gecevicius, M.

Gottmann, J.

J. Gottmann, M. Hermans, and J. Ortmann, “Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE),” J. Laser Micro Nanoeng.8, 15–18 (2013).

Hermans, M.

J. Gottmann, M. Hermans, and J. Ortmann, “Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE),” J. Laser Micro Nanoeng.8, 15–18 (2013).

Hirao, K.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Horváth, Z. L.

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun.94(4), 249–258 (1992).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Miura, K.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Ortmann, J.

J. Gottmann, M. Hermans, and J. Ortmann, “Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE),” J. Laser Micro Nanoeng.8, 15–18 (2013).

Qiu, J.

Sakakura, M.

Shimotsuma, Y.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express19(21), 20657–20664 (2011).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Svirko, Y.

Yang, W.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

Appl. Phys. Lett.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008), doi:.
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007), doi:.
[CrossRef]

J. Laser Micro Nanoeng.

J. Gottmann, M. Hermans, and J. Ortmann, “Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE),” J. Laser Micro Nanoeng.8, 15–18 (2013).

Opt. Commun.

Zs. Bor and Z. L. Horváth, “Distortion of femtosecond pulses in lenses. Wave optical description,” Opt. Commun.94(4), 249–258 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. L. C. Radiant Zemax, Zemax 13, http://www.radiantzemax.com .

LightTrans GmbH, VirtualLabTM, http://www.lighttrans.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microscope images of laser processed glass for two different scan angles θ1 = −2.9° (a) and θ2 = + 2.9° (b) and opposing feed directions at v = 1 mm/s.

Fig. 2
Fig. 2

Principle of pulse deformations induced by a laser scanner system.

Fig. 3
Fig. 3

Flow chart of the PTD calculation in case of the wave optical simulation.

Fig. 4
Fig. 4

Schematic of the f-θ-lens with a focal length of 80 mm. Two scan angles were investigated: 0° and 6°.

Fig. 5
Fig. 5

Ray tracing results for the f-θ-lens obtained with Zemax. (a) PTD for a scan angle of 0° and 6°. For θ = 6° the pulse front is tilted. (b) Pulse broadening for a scan angle of 0° and 6°. The initial pulse duration is 100 fs.

Fig. 6
Fig. 6

Wave optical results obtained with VirtualLab. (a) Spatio-temporal intensity distribution along the y-axis directly behind the f-θ-lens. The pulse for θ = 6° (top) is tilted. (b) Comparison of phase and pulse fronts to calculate the PTD for θ = 0° and θ = 6°.The maximal PTDs are 10 fs and 115 fs, respectively.

Fig. 7
Fig. 7

Comparison of the PTD (a-b) and of the pulse duration (c-d) calculated with Zemax and VirtualLab for the two scan angles. The initial pulse duration was 100 fs.

Tables (1)

Tables Icon

Table 1 Comparison of the Main Simulation Results of the f-θ-Lens

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔT= l c ( λ dn dλ ),
Δτ= λ c d 2 n d λ 2 Δλl,
A 2 ( y,t )= a 0 exp( 4ln( 2 ) ( t t p ) 2 FWHM 2 )
PTD= t p ( y ) | z= z 0 t φ ( y ) | z= z 0 .

Metrics