Abstract

A thin quarter-wave plate and a half-wave plate are designed based on multiple antenna-array sheets (AAS). For transmission through cascaded antenna-array sheets, an equivalent transmission-line model is used. The interspacing dielectric is modeled as a transmission line with each AAS treated as a loaded shunt admittance. By utilizing this transmission-line model to treat the plates as a differential phase shifter between two orthogonal polarizations, a quarter-wave plate can be designed with two AAS and a half-wave plate can be designed with three AAS. Both wave plates can achieve high transmission with the desired 90° and 180° phase difference between two orthogonal polarizations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32, 1455–1461 (1999).
    [CrossRef]
  2. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  3. C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
    [CrossRef]
  4. J. D. Beasley and P. D. Marlowe, “Achromatic wave plates for the mid-infrared,” in Polarization: Measurement, Analysis, and Remote Sensing X, Proc. SPIE8364,83640I (2012).
    [CrossRef]
  5. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett.83, 513–515 (2013).
    [CrossRef]
  6. S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express19, 10604–10612 (2011).
    [CrossRef] [PubMed]
  7. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express17, 2871–2879 (2009).
    [CrossRef] [PubMed]
  8. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
    [CrossRef]
  9. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
    [CrossRef]
  10. R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech.20, 314–323 (1972).
    [CrossRef]
  11. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics2003).
    [CrossRef]
  12. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
    [CrossRef]
  13. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
    [CrossRef] [PubMed]
  14. B. Yang, W. Ye, X. Yuan, Z. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett.38, 679–681 (2013).
    [CrossRef] [PubMed]
  15. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012).
    [CrossRef] [PubMed]
  16. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
    [CrossRef] [PubMed]
  17. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008)
    [CrossRef] [PubMed]
  18. B. A. Munk, Frequency Selective Surfaces (Wiley2000).
    [CrossRef]
  19. J. W. Nilsson, Electric Circuits (Prentice Hall2010).
  20. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
    [CrossRef]
  21. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley2005).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  23. H. H. Li, “Refractive index of ZnSe, ZnS and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13, 103 (1984).
    [CrossRef]
  24. P. J. Wright and B. Cockayne, “The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure,” J.Cryst. Growth59, 148–154 (1982).
    [CrossRef]
  25. M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
    [CrossRef]
  26. J. Y. Lau and S. V. Hum, “Analysis and characterization of a multipole reconfigurable transmitarray element,” IEEE Trans. Antennas Propag.59, 70–79 (2011).
    [CrossRef]
  27. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]

2013 (4)

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett.83, 513–515 (2013).
[CrossRef]

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

B. Yang, W. Ye, X. Yuan, Z. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett.38, 679–681 (2013).
[CrossRef] [PubMed]

2012 (2)

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012).
[CrossRef] [PubMed]

J. D. Beasley and P. D. Marlowe, “Achromatic wave plates for the mid-infrared,” in Polarization: Measurement, Analysis, and Remote Sensing X, Proc. SPIE8364,83640I (2012).
[CrossRef]

2011 (5)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

J. Y. Lau and S. V. Hum, “Analysis and characterization of a multipole reconfigurable transmitarray element,” IEEE Trans. Antennas Propag.59, 70–79 (2011).
[CrossRef]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
[CrossRef] [PubMed]

S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express19, 10604–10612 (2011).
[CrossRef] [PubMed]

2009 (2)

Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express17, 2871–2879 (2009).
[CrossRef] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008)
[CrossRef] [PubMed]

2007 (1)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
[CrossRef]

2006 (1)

2002 (1)

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32, 1455–1461 (1999).
[CrossRef]

1991 (1)

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

1984 (1)

H. H. Li, “Refractive index of ZnSe, ZnS and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13, 103 (1984).
[CrossRef]

1982 (1)

P. J. Wright and B. Cockayne, “The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure,” J.Cryst. Growth59, 148–154 (1982).
[CrossRef]

1972 (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech.20, 314–323 (1972).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Albrektsen, O.

Alù, A.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley2005).

Beasley, J. D.

J. D. Beasley and P. D. Marlowe, “Achromatic wave plates for the mid-infrared,” in Polarization: Measurement, Analysis, and Remote Sensing X, Proc. SPIE8364,83640I (2012).
[CrossRef]

Biagioni, P.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

Boreman, G. D.

S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express19, 10604–10612 (2011).
[CrossRef] [PubMed]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
[CrossRef]

Bozhevolnyi, S. I.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Chenault, D. B.

J. Scott Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45, 5453–5469 (2006).
[CrossRef] [PubMed]

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cockayne, B.

P. J. Wright and B. Cockayne, “The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure,” J.Cryst. Growth59, 148–154 (1982).
[CrossRef]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008)
[CrossRef] [PubMed]

Duò, L.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008)
[CrossRef] [PubMed]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Farlow, C. A.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

Finazzi, M.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Garver, R. V.

R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech.20, 314–323 (1972).
[CrossRef]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008)
[CrossRef] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Goldstein, D. L.

Gordon, R.

Grahn, P.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

Gulley, M. G.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

Hecht, B.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

Hum, S. V.

J. Y. Lau and S. V. Hum, “Analysis and characterization of a multipole reconfigurable transmitarray element,” IEEE Trans. Antennas Propag.59, 70–79 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Kaivola, M.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Kravchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

Lail, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
[CrossRef]

Lau, J. Y.

J. Y. Lau and S. V. Hum, “Analysis and characterization of a multipole reconfigurable transmitarray element,” IEEE Trans. Antennas Propag.59, 70–79 (2011).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of ZnSe, ZnS and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13, 103 (1984).
[CrossRef]

Lin, L.

Marlowe, P. D.

J. D. Beasley and P. D. Marlowe, “Achromatic wave plates for the mid-infrared,” in Polarization: Measurement, Analysis, and Remote Sensing X, Proc. SPIE8364,83640I (2012).
[CrossRef]

Monticone, F.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Munk, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
[CrossRef]

B. A. Munk, Frequency Selective Surfaces (Wiley2000).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32, 1455–1461 (1999).
[CrossRef]

Nielsen, M. G.

Nilsson, J. W.

J. W. Nilsson, Electric Circuits (Prentice Hall2010).

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32, 1455–1461 (1999).
[CrossRef]

Oertel, E.

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

Ovchinnikov, V.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

Pang, Y.

Pezzaniti, J. L.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

Pors, A.

Rahe, M.

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

Reinhardt, L.

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

Ristau, D.

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

Roberts, A.

Scott Tyo, J.

Shaw, J. A.

Shevchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

Spradley, K. D.

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

Tetienne, J.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Tharp, J. S.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
[CrossRef]

Valle, G. D.

Wadsworth, S. L.

Welling, H.

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

Willatzen, M.

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics2003).
[CrossRef]

Wright, P. J.

P. J. Wright and B. Cockayne, “The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure,” J.Cryst. Growth59, 148–154 (1982).
[CrossRef]

Yang, B.

Ye, W.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Yuan, X.

Zeng, C.

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007).
[CrossRef]

J. Y. Lau and S. V. Hum, “Analysis and characterization of a multipole reconfigurable transmitarray element,” IEEE Trans. Antennas Propag.59, 70–79 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech.20, 314–323 (1972).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of ZnSe, ZnS and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13, 103 (1984).
[CrossRef]

J. Phys. D Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32, 1455–1461 (1999).
[CrossRef]

J.Cryst. Growth (1)

P. J. Wright and B. Cockayne, “The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure,” J.Cryst. Growth59, 148–154 (1982).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008)
[CrossRef] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013).
[CrossRef]

Proc. SPIE (3)

C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002).
[CrossRef]

J. D. Beasley and P. D. Marlowe, “Achromatic wave plates for the mid-infrared,” in Polarization: Measurement, Analysis, and Remote Sensing X, Proc. SPIE8364,83640I (2012).
[CrossRef]

M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991).
[CrossRef]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Other (4)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley2005).

B. A. Munk, Frequency Selective Surfaces (Wiley2000).
[CrossRef]

J. W. Nilsson, Electric Circuits (Prentice Hall2010).

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Magnitude and phase of the transmitted fields of a QWP and a HWP made from single layer AAS of cross dipoles. The intersection of the magnitude curves determines the ideal operating frequency since the same power is transmitted for both polarizations. (a) For a QWP, to achieve a 90° phase difference at the operating frequency, at most 50% power is transmitted for both polarizations. (b) For a HWP, as the phase difference approaches 180°, the transmission magnitudes approach zero.

Fig. 2
Fig. 2

The circuit model for a normally incident field E0 containing both X and Y polarizations with equal magnitude passing through a 2-layer AAS. The dielectric is modeled as a transmission line with impedance Z0 and the AAS layers are modeled as shunt reactances. The AAS layer has an admittance jBx for the X-polarized field and jBy for the Y-polarized field. Depending on the values of jBx and jBy, a 90° differential phase shift can be achieved with a combined transmission magnitude of unity.

Fig. 3
Fig. 3

A unit cell design of the proposed QWP using double layer elliptical patches made of gold with dielectrics of ZnSe with ε1 = 5.8 and YbF3 with ε2 = 2.3.

Fig. 4
Fig. 4

Magnitude and phase of the transmitted fields in the X and Y polarizations.

Fig. 5
Fig. 5

The axial ratio and phase difference between the X and Y polarizations. The bandwidth of the QWP is 8.6μm–10.4μm, which is the frequency range where both AR and phase difference curves stay within the gray region.

Fig. 6
Fig. 6

A unit cell design of a HWP using three layers of gold elliptical patches.

Fig. 7
Fig. 7

Magnitude and phase of the transmitted fields in the X and Y polarizations.

Fig. 8
Fig. 8

The axial ratio and phase difference between the X and Y polarizations. The bandwidth of this HWP is 9.2μm – 11μm, or 17% of the operating frequency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = tan 1 [ B x + ( 1 1 2 B x 2 ) 1 B x ] tan 1 [ B y + ( 1 1 2 B y 2 ) 1 B y ]

Metrics