Abstract

Ag nanostructures with surface-enhanced Raman scattering (SERS) activities have been fabricated by applying laser-direct writing (LDW) technique on silver oxide (AgOx) thin films. By controlling the laser powers, multi-level Raman imaging of organic molecules adsorbed on the nanostructures has been observed. This phenomenon is further investigated by atomic-force microscopy and electromagnetic calculation. The SERS-active nanostructure is also fabricated on transparent and flexible substrate to demonstrate our promising strategy for the development of novel and low-cost sensing chip.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
    [Crossref] [PubMed]
  2. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  4. A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
    [Crossref] [PubMed]
  5. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
    [Crossref] [PubMed]
  6. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
    [Crossref] [PubMed]
  7. W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
    [Crossref]
  8. K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
    [Crossref] [PubMed]
  9. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  10. H.-L. Huang, C. F. Chou, S. H. Shiao, Y.-C. Liu, J.-J. Huang, S. U. Jen, and H.-P. Chiang, “Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays,” Opt. Express 21(S5), A901–A908 (2013).
    [Crossref]
  11. J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser-ablation of metals - a new method for preparing SERS active colloids,” Appl. Spectrosc. 47(12), 1959–1964 (1993).
    [Crossref]
  12. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
    [Crossref] [PubMed]
  13. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
    [Crossref]
  14. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
    [Crossref] [PubMed]
  15. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
    [Crossref] [PubMed]
  16. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
    [Crossref] [PubMed]
  17. C.-H. Lin, L. Jiang, Y.-H. Chai, H. Xiao, S.-J. Chen, and H.-L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced raman scattering,” Opt. Express 17(24), 21581–21589 (2009).
    [Crossref] [PubMed]
  18. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
    [Crossref]
  19. M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
    [Crossref] [PubMed]
  20. W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett. 12(12), 6235–6243 (2012).
    [Crossref] [PubMed]
  21. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
    [Crossref] [PubMed]
  22. S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
    [Crossref] [PubMed]
  23. D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
    [Crossref] [PubMed]
  24. W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
    [Crossref] [PubMed]
  25. A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale 3(7), 2903–2908 (2011).
    [Crossref] [PubMed]
  26. X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
    [Crossref] [PubMed]
  27. Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C 116(17), 9716–9723 (2012).
    [Crossref]
  28. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
    [Crossref] [PubMed]
  29. W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
    [Crossref]
  30. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
    [Crossref]
  31. S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys. 42(10), 6705–6712 (2003).
    [Crossref]
  32. T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
    [Crossref]
  33. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  34. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  35. D. V. Tsu and T. Ohta, “Mechanism of properties of noble ZnS-SiO2 protection layer for phase change optical disk media,” Jpn. J. Appl. Phys. 45(8A), 6294–6307 (2006).
    [Crossref]
  36. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
    [Crossref] [PubMed]
  37. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
    [Crossref] [PubMed]
  38. C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
    [Crossref] [PubMed]

2013 (1)

2012 (8)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett. 12(12), 6235–6243 (2012).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C 116(17), 9716–9723 (2012).
[Crossref]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (6)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

2009 (3)

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

C.-H. Lin, L. Jiang, Y.-H. Chai, H. Xiao, S.-J. Chen, and H.-L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced raman scattering,” Opt. Express 17(24), 21581–21589 (2009).
[Crossref] [PubMed]

2008 (3)

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
[Crossref] [PubMed]

A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
[Crossref] [PubMed]

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

2006 (2)

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[Crossref] [PubMed]

D. V. Tsu and T. Ohta, “Mechanism of properties of noble ZnS-SiO2 protection layer for phase change optical disk media,” Jpn. J. Appl. Phys. 45(8A), 6294–6307 (2006).
[Crossref]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

2003 (1)

S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys. 42(10), 6705–6712 (2003).
[Crossref]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

1999 (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

1998 (1)

1994 (1)

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

1993 (1)

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

1984 (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Ai, K.

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

Ansari, D. O.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Asaba, K.

Ayas, S.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Aydinli, A.

Barhoumi, A.

A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Botet, R.

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Buividas, R.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Chai, Y.-H.

Chang, C. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
[Crossref] [PubMed]

Chang, R.

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Chen, C.-C.

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Chen, C.-L.

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Chen, C.-W.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Chen, G. Z.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Chen, H. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chen, S.-J.

Chen, Y. L.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chen, Z. C.

Cheng, H. W.

Chiang, H. P.

Chiang, H.-P.

H.-L. Huang, C. F. Chou, S. H. Shiao, Y.-C. Liu, J.-J. Huang, S. U. Jen, and H.-P. Chiang, “Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays,” Opt. Express 21(S5), A901–A908 (2013).
[Crossref]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Chou, A.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Chou, C. F.

Chu, C. H.

Chu, N.-N.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chumanov, G.

Chung, A. J.

A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale 3(7), 2903–2908 (2011).
[Crossref] [PubMed]

Cotton, T. M.

Crozier, K. B.

W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett. 12(12), 6235–6243 (2012).
[Crossref] [PubMed]

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Dâna, A.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Danilevicius, P.

Dirisaglik, F.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Djurisic, A. B.

Dresselhaus, M. S.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Duan, X. M.

Ekiz, O. O.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Elazar, J. M.

Erickson, D.

A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale 3(7), 2903–2908 (2011).
[Crossref] [PubMed]

Ertas, G.

Fang, Y.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Fredericks, P. M.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Fritzsche, W.

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Güner, H.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Halas, N. J.

A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Han, N. R.

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

He, D.

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

He, W.

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

He, Y. J.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Hildebrandt, P.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Hong, M. H.

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
[Crossref] [PubMed]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Hsiao, M.-K.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Hu, B.

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Huang, D.-W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, H. W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, H.-L.

Huang, J.-J.

Huang, S.-H.

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Huang, Y.-W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huh, Y. S.

A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale 3(7), 2903–2908 (2011).
[Crossref] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Hwang, D.-F.

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Hwang, J.-S.

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Inasawa, S.

S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys. 42(10), 6705–6712 (2003).
[Crossref]

Izake, E. L.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Jaatinen, E.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jen, H.-C.

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Jen, S. U.

Jiang, L.

Jin, F.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Juodkazis, S.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
[Crossref] [PubMed]

Kajikawa, K.

Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C 116(17), 9716–9723 (2012).
[Crossref]

Kawata, S.

Kocabas, A.

Koda, S.

S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys. 42(10), 6705–6712 (2003).
[Crossref]

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

Kong, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Kovacs, J.

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Lim, C. S.

Lin, C.-H.

Lin, I. C.

Lin, S. K.

Lin, W. C.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Lin, W.-C.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

Ling, X.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Liu, R.-S.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

Liu, Y.-C.

Liu, Z.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Lu, L.

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

Majewski, M. L.

Malinauskas, M.

Mansuripur, M.

Masui, K.

Möller, R.

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

Moskovits, M.

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Nagai, Y.

Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C 116(17), 9716–9723 (2012).
[Crossref]

Neddersen, J.

Ng, B.

Nie, S.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Ohta, T.

D. V. Tsu and T. Ohta, “Mechanism of properties of noble ZnS-SiO2 protection layer for phase change optical disk media,” Jpn. J. Appl. Phys. 45(8A), 6294–6307 (2006).
[Crossref]

Okyay, A. K.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Peng, T.-C.

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Peng, X.-H.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Popp, J.

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

Qian, X.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Rakic, A. D.

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Rodgers, T. C.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Schüler, T.

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

Seniutinas, G.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

Senlik, S. S.

Shalaev, V. M.

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Shiao, S. H.

Shin, D. M.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Shiue, C. D.

Shoji, S.

Stockburger, M.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Strelau, K. K.

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

Sugiyama, M.

S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys. 42(10), 6705–6712 (2003).
[Crossref]

Suh, J. S.

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Sun, G.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tam, F.

A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
[Crossref] [PubMed]

Tsai, D. P.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
[Crossref] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[Crossref] [PubMed]

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Tsai, H.-L.

Tseng, M. L.

Tsu, D. V.

D. V. Tsu and T. Ohta, “Mechanism of properties of noble ZnS-SiO2 protection layer for phase change optical disk media,” Jpn. J. Appl. Phys. 45(8A), 6294–6307 (2006).
[Crossref]

Türker, B.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Wang, D.

W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett. 12(12), 6235–6243 (2012).
[Crossref] [PubMed]

Wang, K.

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Wang, M. D.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Wang, Z. H.

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Xiao, H.

Xiao, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xie, L.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Xu, H.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Yamaguchi, T.

Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C 116(17), 9716–9723 (2012).
[Crossref]

Yang, L.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Yao, Q.-F.

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Yin-Goen, Q.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Young, A. N.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Yu, S.-H.

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Zhang, D.

A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
[Crossref] [PubMed]

Zhang, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Zhang, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett. 12(12), 6235–6243 (2012).
[Crossref] [PubMed]

Zong, C.

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces 4(12), 6599–6608 (2012).
[Crossref] [PubMed]

ACS Nano (4)

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano 6(8), 6852–6861 (2012).
[Crossref] [PubMed]

D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano 3(12), 3993–4002 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Appl. Spectrosc. (1)

ChemPhysChem (1)

K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem 11(2), 394–398 (2010).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc. 130(16), 5523–5529 (2008).
[Crossref] [PubMed]

J. Phys. Chem. (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

J. Phys. Chem. B (2)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103(8), 1226–1232 (1999).
[Crossref]

J. Phys. Chem. C (1)

Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C 116(17), 9716–9723 (2012).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys. 42(10), 6705–6712 (2003).
[Crossref]

D. V. Tsu and T. Ohta, “Mechanism of properties of noble ZnS-SiO2 protection layer for phase change optical disk media,” Jpn. J. Appl. Phys. 45(8A), 6294–6307 (2006).
[Crossref]

Laser Photonics Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
[Crossref]

Nano Lett. (3)

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett. 12(12), 6235–6243 (2012).
[Crossref] [PubMed]

Nanoscale (2)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
[Crossref] [PubMed]

A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale 3(7), 2903–2908 (2011).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2008).
[Crossref] [PubMed]

Opt. Express (9)

H.-L. Huang, C. F. Chou, S. H. Shiao, Y.-C. Liu, J.-J. Huang, S. U. Jen, and H.-P. Chiang, “Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays,” Opt. Express 21(S5), A901–A908 (2013).
[Crossref]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
[Crossref] [PubMed]

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19(8), 6990–6998 (2011).
[Crossref] [PubMed]

K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express 19(23), 22786–22796 (2011).
[Crossref] [PubMed]

C.-H. Lin, L. Jiang, Y.-H. Chai, H. Xiao, S.-J. Chen, and H.-L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced raman scattering,” Opt. Express 17(24), 21581–21589 (2009).
[Crossref] [PubMed]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
[Crossref] [PubMed]

C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[Crossref] [PubMed]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[Crossref] [PubMed]

C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett. 72(26), 4149–4152 (1994).
[Crossref] [PubMed]

Plasmonics (2)

W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics 4(2), 187–192 (2009).
[Crossref]

T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics 6(1), 29–34 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical reflection image of laser-generated Ag nanostructures made with laser powers 21 mW, 11 mW, 7 mW, respectively and (b) the corresponding Raman intensity map of R6G on the Ag nanostructures. The Raman intensity map is obtained from integrating spectral intensity of the R6G Raman peak ranging from 598 to 623 cm−1. The two images are shown on the same scale. (c) Raman spectra of R6G adsorbed on various zones of laser-processed AgOx thin film. The up insert shows the molecular structure of R6G molecule, and the button insert is the magnified Raman spectrum of R6G molecules obtained from the region of unprocessed AgOx thin film.

Fig. 2
Fig. 2

(a)-(c) 2D AFM images of laser-generated Ag nanostructures with processing laser powers 21 mW, 11 mW, and 7 mW, respectively. The three images are shown on the same scale. (d)-(f) are the corresponding 3D AFM images, and (g)-(i) are the corresponding histograms of Ag NP diameters generated with various laser powers. The height scales in the 2D- and 3D- AFM images are properly adjusted for clearly demonstrating the differences of the surface morphologies between the three Ag nanostructures.

Fig. 3
Fig. 3

Electric-filed energy slice contour (E* D / 2) at the interface of Ag-BK7 under the illumination of wavelength 532 nm calculated using finite-difference time-domain (FDTD) for the laser-generated Ag nanostructures with processing laser powers (a) 21 mW and (b) 7 mW, respectively.

Fig. 4
Fig. 4

Raman spectra of R6G molecules obtained from the laser-generated Ag nanostructure and as-deposited AgOx thin film on optical transparent and flexible substrate. The Raman image of intensity map shows the spatial distribution of Raman intensity integrated over the peak in the regime of 598-623 cm−1

Metrics