Abstract

We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
    [CrossRef]
  2. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
    [CrossRef]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech.52(10), 2438–2447 (2004).
    [CrossRef]
  4. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt.43(30), 5637–5646 (2004).
    [CrossRef] [PubMed]
  5. T. Yasuda, Y. Kawada, H. Toyoda, and H. Takahashi, “Terahertz movie of internal transmission imaging,” Opt. Express15(23), 15583–15588 (2007).
    [CrossRef] [PubMed]
  6. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  7. A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002).
    [CrossRef]
  8. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
    [CrossRef]
  9. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
    [CrossRef] [PubMed]
  10. J. Yang, S. Ruan, and M. Zhang, “Real-time, continuous-wave terahertz imaging by a pyroelectric camera,” Chin. Opt. Lett.6(1), 29–31 (2008).
    [CrossRef]
  11. A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
    [CrossRef]
  12. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express19(8), 7827–7832 (2011).
    [CrossRef] [PubMed]
  13. J. Baird, “Apparatus for transmitting views or images to a distance” patent, US1699270, January 1929.
  14. M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science157(3786), 305–307 (1967).
    [CrossRef] [PubMed]
  15. G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988).
    [CrossRef]
  16. J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989).
    [PubMed]
  17. T. Tanaami and K. Mikuriya, “Nipkow disk for confocal optical scanner” European Patent Office, EP0539691 A2, 5 May 1993.
  18. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005).
    [CrossRef] [PubMed]
  19. Y. Takahara, N. Matsuki, and Y. Ikegaya, “Nipkow confocal imaging from deep brain tissues,” J. Integr. Neurosci.10(01), 121–129 (2011).
    [CrossRef] [PubMed]
  20. Y. Ma, J. Grant, S. Saha, and D. R. S. Cumming, “Terahertz single pixel imaging based on a Nipkow disk,” Opt. Lett.37(9), 1484–1486 (2012).
    [CrossRef] [PubMed]
  21. E. Hecht, Optics 4th Edition, (Addison Wesley, 2001).
  22. M. B. Stern, “Binary optics: A VLSI-based microptics technology,” Microelectron. Eng.32(1-4), 369–388 (1996).
    [CrossRef]
  23. E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
    [CrossRef]
  24. S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
    [CrossRef]
  25. M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
    [CrossRef]

2013 (1)

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

2012 (1)

2011 (2)

2008 (3)

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

J. Yang, S. Ruan, and M. Zhang, “Real-time, continuous-wave terahertz imaging by a pyroelectric camera,” Chin. Opt. Lett.6(1), 29–31 (2008).
[CrossRef]

2007 (1)

2006 (1)

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

2005 (3)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005).
[CrossRef] [PubMed]

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002).
[CrossRef]

2000 (1)

M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
[CrossRef]

1996 (1)

M. B. Stern, “Binary optics: A VLSI-based microptics technology,” Microelectron. Eng.32(1-4), 369–388 (1996).
[CrossRef]

1995 (1)

1989 (1)

J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989).
[PubMed]

1988 (1)

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988).
[CrossRef]

1967 (1)

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science157(3786), 305–307 (1967).
[CrossRef] [PubMed]

Alam, M. S.

M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
[CrossRef]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

Blaikie, R.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Bognar, J. G.

M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
[CrossRef]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

Coquillat, D.

Corle, T. R.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988).
[CrossRef]

Cumming, D. R. S.

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

Y. Ma, J. Grant, S. Saha, and D. R. S. Cumming, “Terahertz single pixel imaging based on a Nipkow disk,” Opt. Lett.37(9), 1484–1486 (2012).
[CrossRef] [PubMed]

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Dobroiu, A.

Duling, I. N.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Durbin, S. M.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Dussopt, L.

Egger, M. D.

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science157(3786), 305–307 (1967).
[CrossRef] [PubMed]

Giffard, B.

Gräf, R.

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005).
[CrossRef] [PubMed]

Grant, J.

Grant, J. P.

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

Hardie, R. C.

M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
[CrossRef]

Heinz, T. F.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002).
[CrossRef]

Hu, B. B.

Hu, Q.

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
[CrossRef] [PubMed]

Ikegaya, Y.

Y. Takahara, N. Matsuki, and Y. Ikegaya, “Nipkow confocal imaging from deep brain tissues,” J. Integr. Neurosci.10(01), 121–129 (2011).
[CrossRef] [PubMed]

Jackson, J. B.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Kawada, Y.

Kawase, K.

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

Kino, G. S.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988).
[CrossRef]

Knap, W.

Kumar, S.

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

Lee, A. W.

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005).
[CrossRef] [PubMed]

Li, C.

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

Lichtman, J. W.

J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989).
[PubMed]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

Ma, Y.

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

Y. Ma, J. Grant, S. Saha, and D. R. S. Cumming, “Terahertz single pixel imaging based on a Nipkow disk,” Opt. Lett.37(9), 1484–1486 (2012).
[CrossRef] [PubMed]

Matsuki, N.

Y. Takahara, N. Matsuki, and Y. Ikegaya, “Nipkow confocal imaging from deep brain tissues,” J. Integr. Neurosci.10(01), 121–129 (2011).
[CrossRef] [PubMed]

Menu, M.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

Morita, Y.

Mourou, G. A.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Mourou, M.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Nahata, A.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002).
[CrossRef]

Nuss, M. C.

Ohshima, Y. N.

Otani, C.

Petran, M.

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science157(3786), 305–307 (1967).
[CrossRef] [PubMed]

Qin, Q.

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

Reno, J. L.

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

Rietdorf, J.

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005).
[CrossRef] [PubMed]

Ruan, S.

Saha, S.

Saha, S. C.

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

Sakowicz, M.

Schuster, F.

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech.52(10), 2438–2447 (2004).
[CrossRef]

Skotnicki, T.

Stern, M. B.

M. B. Stern, “Binary optics: A VLSI-based microptics technology,” Microelectron. Eng.32(1-4), 369–388 (1996).
[CrossRef]

Sunderland, W. J.

J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989).
[PubMed]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

Takahara, Y.

Y. Takahara, N. Matsuki, and Y. Ikegaya, “Nipkow confocal imaging from deep brain tissues,” J. Integr. Neurosci.10(01), 121–129 (2011).
[CrossRef] [PubMed]

Takahashi, H.

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

Teppe, F.

Toyoda, H.

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

Videlier, H.

Walsby, E. D.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Wang, S.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Whitaker, J. F.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Wilkinson, R. S.

J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989).
[PubMed]

Williams, B. S.

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

Williamson, S. L.

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988).
[CrossRef]

Xu, J.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Yamashita, M.

Yang, J.

Yardley, J. T.

A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002).
[CrossRef]

Yasuda, B. J.

M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
[CrossRef]

Yasuda, T.

Yuan, T.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Zhang, M.

Zhang, X.-C.

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Zimmermann, T.

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005).
[CrossRef] [PubMed]

Adv. Biochem. Eng. Biotechnol. (1)

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006).
[CrossRef]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005).
[CrossRef]

A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008).
[CrossRef]

G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE Trans. Instrum. Sci. Technol. (1)

M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech.52(10), 2438–2447 (2004).
[CrossRef]

IEEE Trans. Terahertz Sci. Tech. (1)

S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013).
[CrossRef]

J. Integr. Neurosci. (1)

Y. Takahara, N. Matsuki, and Y. Ikegaya, “Nipkow confocal imaging from deep brain tissues,” J. Integr. Neurosci.10(01), 121–129 (2011).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. (1)

E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002).
[CrossRef]

Microelectron. Eng. (1)

M. B. Stern, “Binary optics: A VLSI-based microptics technology,” Microelectron. Eng.32(1-4), 369–388 (1996).
[CrossRef]

New Biol. (1)

J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989).
[PubMed]

Opt. Commun. (1)

J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Science (1)

M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science157(3786), 305–307 (1967).
[CrossRef] [PubMed]

Other (3)

T. Tanaami and K. Mikuriya, “Nipkow disk for confocal optical scanner” European Patent Office, EP0539691 A2, 5 May 1993.

J. Baird, “Apparatus for transmitting views or images to a distance” patent, US1699270, January 1929.

E. Hecht, Optics 4th Edition, (Addison Wesley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the conventional and proposed Nipkow disks. (a) A conventional Nipkow disk with single spiral pinhole array. (b) The proposed Nipkow disk with THz Fresnel lens array.

Fig. 2
Fig. 2

Optical image of the fabricated THz silicon Nipkow disk with integration of twelve 16-level binary diffractive lenses.

Fig. 3
Fig. 3

(a) Surface profile of a typical Fresnel lens and (b) an SEM image of a lens at the central cut-off plane.

Fig. 4
Fig. 4

(a) Illustration of the experimental setup for characterising the focal length and focal point of the lenses. (b) Image taken at the focal point of one of the 12 lenses.

Fig. 5
Fig. 5

(a) Illustration of the imaging system setup. (b) A plastic disk holder was made to accommodate the silicon Nipkow disk and is driven by a stepper motor.

Fig. 6
Fig. 6

(a) An optical image of the aluminium object “T” with dimensions of 10 mm x10 mm. (b) Illustration of the Nipkow imaging mechanism without using a multiframe technique and (c) the formation of the third fame of the image when the multiframe technique was used for improving the image resolution of (b). The object “T” in (c) was shifted to the left by 1 mm (2nd frame) from its original position.

Fig. 7
Fig. 7

The constructed ‘T’ images using the imaging system without (a) and with (b) using a multiframe technique. The pixel sizes in x-axial direction and the total numbers of pixel are 2 mm and 1200 for (a) and 0.5 mm and 4800 for (b), respectively.

Tables (1)

Tables Icon

Table 1 Parameters for the Design of a Silicon Wafer Based Nipkow Disk with Integration of Diffractive Lenses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I 0 = ε A 2 A 2 2 R 2
R ni = λf(2 i m +2n2)

Metrics