Abstract

We demonstrate that 3D printing, commonly associated with the manufacture of large objects, allows for the fabrication of high quality terahertz (THz) plasmonic structures. Using a commercial 3D printer, we print a variety of structures that include abrupt out-of-plane bends and continuously varying bends. The waveguides are initially printed in a polymer resin and then sputter deposited with ~500 nm of Au. This thickness of Au is sufficient to support low loss propagation of surface plasmon-polaritons with minimal impact from the underlying layer, thereby demonstrating a useful approach for fabricating a broad range of plasmonic structures that incorporate complex geometries. Using THz time-domain spectroscopy, we measure the guided-wave properties of these devices. We find that the propagation properties of the guided-wave modes are similar to those obtained in similar conventional metal-based waveguides, albeit with slightly higher loss. This additional loss is attributed to roughness associated with limitations that currently exist in commercial 3D printers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
    [CrossRef]
  5. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
    [CrossRef] [PubMed]
  6. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  7. A. Agrawal, Z. V. Vardeny, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express16(13), 9601–9613 (2008).
    [CrossRef] [PubMed]
  8. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
    [CrossRef]
  9. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  10. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
    [CrossRef] [PubMed]
  11. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  12. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008).
    [CrossRef] [PubMed]
  13. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18(2), 754–764 (2010).
    [CrossRef] [PubMed]
  14. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express18(20), 21498–21503 (2010).
    [CrossRef] [PubMed]
  15. G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys.13(3), 033024 (2011).
    [CrossRef]
  16. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
    [CrossRef]
  17. Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express16(21), 16442–16451 (2008).
    [CrossRef] [PubMed]
  18. Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011).
    [CrossRef] [PubMed]
  19. J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett.103(3), 031104 (2013).
    [CrossRef]
  20. X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express13(24), 9834–9840 (2005).
    [CrossRef] [PubMed]
  21. A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express15(9), 5616–5624 (2007).
    [CrossRef] [PubMed]
  22. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
    [CrossRef] [PubMed]

2013 (2)

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett.103(3), 031104 (2013).
[CrossRef]

2011 (2)

Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011).
[CrossRef] [PubMed]

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys.13(3), 033024 (2011).
[CrossRef]

2010 (3)

2008 (3)

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

2006 (2)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express13(24), 9834–9840 (2005).
[CrossRef] [PubMed]

2004 (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2001 (1)

Agrawal, A.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cui, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys.13(3), 033024 (2011).
[CrossRef]

Cui, T. J.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Eldaiki, O. M.

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

Gao, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Garcia-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18(2), 754–764 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Gehm, M. E.

George, R.

Grischkowsky, D.

Harrington, J. A.

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Jiang, W. X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kinast, J.

Kumar, G.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys.13(3), 033024 (2011).
[CrossRef]

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Liu, J.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett.103(3), 031104 (2013).
[CrossRef]

Lu, Z.

Ma, H. F.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Martin-Cano, D.

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18(2), 754–764 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Mendis, R.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett.103(3), 031104 (2013).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

Mittleman, D. M.

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett.103(3), 031104 (2013).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Moreno, E.

Mueller, E.

Nahata, A.

Nesterov, M. L.

Ng, W.-R.

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pandey, S.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys.13(3), 033024 (2011).
[CrossRef]

Pedersen, P.

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Shen, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

Shou, X.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Vardeny, Z. V.

A. Agrawal, Z. V. Vardeny, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express16(13), 9601–9613 (2008).
[CrossRef] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wu, Z.

Xin, H.

Yang, R.

Zhao, W.

Zhu, W.

Appl. Phys. Lett. (2)

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett.102(15), 151912 (2013).
[CrossRef]

J. Liu, R. Mendis, and D. M. Mittleman, “A Maxwell’s fish eye lens for the terahertz region,” Appl. Phys. Lett.103(3), 031104 (2013).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Nature (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys.13(3), 033024 (2011).
[CrossRef]

Opt. Express (9)

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

Z. Wu, J. Kinast, M. E. Gehm, and H. Xin, “Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures,” Opt. Express16(21), 16442–16451 (2008).
[CrossRef] [PubMed]

Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express19(5), 3962–3972 (2011).
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18(2), 754–764 (2010).
[CrossRef] [PubMed]

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

A. Agrawal, Z. V. Vardeny, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express16(13), 9601–9613 (2008).
[CrossRef] [PubMed]

X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express13(24), 9834–9840 (2005).
[CrossRef] [PubMed]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Science (3)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the printed THz waveguide, including the excitation and detection scheme. The groove at the input end is used to couple normally incident broadband THz radiation to SPPs. For detection purposes, the optical probe beam propagates parallel to the THz guided-wave SPPs. A <110> ZnTe crystal is used for coherent detection of the Ez component of the guided-wave SPP. The design dimensions of the rectangular blind holes are: length s = 550 µm, width a = 150 µm, depth h = 450 µm, and periodicity d = 250 µm.

Fig. 2
Fig. 2

Propagation properties for a planar straight waveguide with periodically spaced rectangular blind holes. (a) Measured transmission spectrum for the waveguide. The arrows show the anti-resonance frequencies associated with the different effective cavity modes. These dips occur at 0.27, 0.47 and 0.54 THz. (b) The field amplitude |Ez| measured along the x-axis at different positions along the length of the waveguide. The dots represent the measured field value normalized to the value at the input. The black line is an exponential fit to the data, corresponding to a 1/e decay length of ~5.9 cm. (c) The |Ez| component of the electric field measured along the z-axis at different heights above the sample surface. The dots represent the measured field value normalized to the value at the surface. The black line is an exponential fit to the data, corresponding to a 1/e decay length of 2.6 mm. (d) The |Ez| component of the electric field measured along the y-axis 5 cm from the waveguide input. The dots represent the measured value, while the black trace is a Gaussian fit to the data, yielding a (FWHM) width of ~3.4 mm.

Fig. 3
Fig. 3

Properties of abrupt out-of-plane bends. (a) Schematic drawing for the printed bend structures. Devices were fabricated with bend angles from 5° to 40°, in 5° increments. (b) Excess loss per bend as a function of the bend angle measured at 0.27 THz.

Fig. 4
Fig. 4

Properties of a 3D Y-splitters. (a) Schematic diagram of a 10 cm long Y-splitter, in which the two arms branch off both in-plane and out-of-plane. In both cases, the branches are at ± 10 ° relative to the preceding waveguide. (b) Image of the Y splitter after sputter deposition with Au. (c) & (d) The field amplitude |Ez| along y-axis at the end of the Y-splitter for both arms of the waveguide. The black dots correspond to experimental data and the solid black traces are fits to the experimental data using Gaussian functions. The FWHM widths are ~3.5 mm for both arms.

Fig. 5
Fig. 5

Properties of 3D curved waveguides. (a) Schematic drawing of the 60 mm long curved waveguide with the various sections delineated. The input (A-B) and output (F-G) sections are 5 mm long planar waveguides used to facilitate input coupling and detection of the guided wave at the out put. The central arc (C-D-E) has a radius of curvature that varies between 5 mm and 15 mm. The connecting sections (B-C and E-F) are adjustable to ensure a smoothly varying curve. (b) Images of the four fabricated devices. (c) Measured excess loss as a function of the depth, H.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν mnp = c 2π ( mπ s ) 2 + ( nπ a ) 2 + ( (p+0.25)π h ) 2

Metrics