Abstract

The radiation force of circular Airy beams (CAB) on a dielectric Rayleigh particle is investigated in this paper. Our results show that the CAB can be used to trap the particle whose refractive index is larger than the ambient at different positions along the beam axis. Comparing with the Gaussian beam under the same conditions, the longitudinal and the transverse gradient force of CAB on the Rayleigh particle are increased, and the particle can be trapped more stable. Our analyses also demonstrate that the trapping properties of CAB can be modulated by controlling corresponding parameters of CAB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
    [CrossRef] [PubMed]
  2. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
    [CrossRef] [PubMed]
  3. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
    [CrossRef] [PubMed]
  4. J. A. Davis, D. M. Cottrell, and D. Sand, “Abruptly autofocusing vortex beams,” Opt. Express 20(12), 13302–13310 (2012).
    [CrossRef] [PubMed]
  5. Y. F. Jiang, K. K. Huang, and X. H. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express 20(17), 18579–18584 (2012).
    [CrossRef] [PubMed]
  6. S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
    [CrossRef] [PubMed]
  7. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
    [CrossRef] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  9. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature 348(6299), 348–352 (1990).
    [CrossRef] [PubMed]
  10. L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
    [CrossRef] [PubMed]
  11. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
    [CrossRef] [PubMed]
  12. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  13. P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146(1-6), 119–123 (1998).
    [CrossRef]
  14. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
    [CrossRef]
  15. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  16. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  17. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  18. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [CrossRef]
  19. Q. W. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 5(3), 229–232 (2003).
    [CrossRef]
  20. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
    [CrossRef] [PubMed]
  21. Y. F. Jiang, K. K. Huang, and X. H. Lu, “Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle,” Opt. Express 19(10), 9708–9713 (2011).
    [CrossRef] [PubMed]
  22. C. L. Zhao, Y. J. Cai, X. H. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17(3), 1753–1765 (2009).
    [CrossRef] [PubMed]
  23. C. L. Zhao and Y. J. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett. 36(12), 2251–2253 (2011).
    [CrossRef] [PubMed]
  24. Z. R. Liu and D. M. Zhao, “Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams,” Opt. Express 20(3), 2895–2904 (2012).
    [CrossRef] [PubMed]
  25. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
    [CrossRef] [PubMed]
  26. W. H. Carter, “Electromagnetic Field of a Gaussian Beam with an Elliptical Cross Section,” J. Opt. Soc. Am. 62(10), 1195–1201 (1972).
    [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics, (Roberts & Company Publishers, 2005).
  28. F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, The NIST Handbook of Mathematical Functions, (Cambridge University Press, 2010).
  29. D. Leseberg, “Computer-generated three-dimensional image holograms,” Appl. Opt. 31(2), 223–229 (1992).
    [CrossRef] [PubMed]
  30. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21(1), 53–58 (2004).
    [CrossRef] [PubMed]
  31. S. A. Collins., “Lens-System Diffraction Integral Written in Terms of Matrix Optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970).
    [CrossRef]
  32. O. Vallée and M. Soares, Airy Functions and Applications to Physics, (Imperial College, 2004).
  33. B. T. Draine, “The Discrete-Dipole Approximation and Its Application to Interstellar Graphite Grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  34. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

2013 (1)

2012 (3)

2011 (6)

2010 (1)

2009 (1)

2008 (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

2007 (1)

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

Q. W. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 5(3), 229–232 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

1998 (1)

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146(1-6), 119–123 (1998).
[CrossRef]

1997 (2)

L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

1992 (1)

1990 (1)

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

1988 (1)

B. T. Draine, “The Discrete-Dipole Approximation and Its Application to Interstellar Graphite Grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1986 (1)

1972 (1)

1970 (1)

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

Ashkin, A.

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Cai, Y. J.

Carter, W. H.

Chen, Z. G.

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Chremmos, I.

Christodoulides, D. N.

Chu, S.

Collins, S. A.

Cottrell, D. M.

Davis, J. A.

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

Draine, B. T.

B. T. Draine, “The Discrete-Dipole Approximation and Its Application to Interstellar Graphite Grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Dziedzic, J. M.

Efremidis, N. K.

Eyyuboglu, H. T.

Foot, C. J.

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146(1-6), 119–123 (1998).
[CrossRef]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Gutiérrez-Vega, J. C.

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Huang, K. K.

Jiang, Y. F.

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Leseberg, D.

Li, P.

Liu, S.

Liu, Z. R.

Lu, X. H.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Mills, M. S.

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Papazoglou, D. G.

Prakash, J.

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Sand, D.

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Simmons, R. M.

L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
[CrossRef] [PubMed]

Sleep, J. A.

L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
[CrossRef] [PubMed]

Trinick, J.

L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
[CrossRef] [PubMed]

Tskhovrebova, L.

L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
[CrossRef] [PubMed]

Tzortzakis, S.

Wang, L. G.

Wang, L. Q.

Wang, M.

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Zemanek, P.

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146(1-6), 119–123 (1998).
[CrossRef]

Zhan, Q. W.

Q. W. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 5(3), 229–232 (2003).
[CrossRef]

Zhang, P.

Zhang, Z.

Zhao, C. L.

Zhao, D. M.

Zhao, J.

Zhu, S. Y.

Appl. Opt. (1)

Astrophys. J. (1)

B. T. Draine, “The Discrete-Dipole Approximation and Its Application to Interstellar Graphite Grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Biophys. J. (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

Q. W. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 5(3), 229–232 (2003).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Nature (5)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature 387(6630), 308–312 (1997).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun. 146(1-6), 119–123 (1998).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (9)

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
[CrossRef] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[CrossRef] [PubMed]

I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
[CrossRef] [PubMed]

C. L. Zhao and Y. J. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett. 36(12), 2251–2253 (2011).
[CrossRef] [PubMed]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[CrossRef] [PubMed]

I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
[CrossRef] [PubMed]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
[CrossRef] [PubMed]

Optical manipulation of nanoparticles: a review (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

Phys. Rev. Lett. (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, (Roberts & Company Publishers, 2005).

F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, The NIST Handbook of Mathematical Functions, (Cambridge University Press, 2010).

O. Vallée and M. Soares, Airy Functions and Applications to Physics, (Imperial College, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison about the intensity of the CAB in the beam center of the paraxial and the non-paraxial propagation results. (a) s = 5 μ m , (b) s = 1 μ m .

Fig. 2
Fig. 2

The distribution of the radiation force on the Rayleigh particle with np = 1.59. (a) The longitudinal gradient force; (b) the scattering force, (c) the sum of the gradient force and the scattering force, the inset figure shows the positions of za, zb and zc. (d) The transverse gradient force at za = 981 μ m ; (e) the transverse gradient force at zb = 1038 μ m , (f) the transverse gradient force of zc = 1076 μ m .

Fig. 3
Fig. 3

The distribution of the radiation force on the Rayleigh particle with np = 1.00. (a) The sum of the gradient force and the scattering force. (b) The transverse gradient force at zb = 1038 μ m .

Fig. 4
Fig. 4

The distributions of radiation forces with different parameters exerted on the Rayleigh particle with np = 1.59. (a)The longitudinal radiation forces with different a, while s = 5um, r0 = 50um; (b) the transverse gradient forces at the first equilibrium point in Fig. 4(a). (c) The longitudinal radiation forces with different r0, while a = 0.08, s = 5um; (d) the transverse gradient forces at the first equilibrium points in Fig. 4(c). (e) The longitudinal gradient forces with different s, while a = 0.08, r0 = 50um; (f) the transvers gradient forces at the first equilibrium points in Fig. 4(e).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E ( r , z = 0 ) = A i ( r 0 r s ) exp ( a r 0 r s ) ,
E ( r , φ , z ) = E x ( r , z ) x ^ + E z ( r , φ , z ) z ^ ,
E x ( r , z ) = 2 π 0 g ˜ ( k ) J 0 ( 2 π k r ) e 2 i π z k z k d k ,
g ˜ ( k ) = 2 π 0 E ( r , 0 ) J 0 ( 2 π k r ) r d r ,
E z ( r , φ , z ) = 0 2 π 0 k cos θ k z g ˜ ( k ) e i 2 π [ k z z + k r cos ( θ φ ) ] k d k d θ = 0 k 2 2 k z g ˜ ( k ) e i 2 π k z z ( 0 2 π e i 2 π k r cos ( θ φ ) + i θ d θ + 0 2 π e i 2 π k r cos ( θ φ ) i θ d θ ) d k = i 2 π 0 k 2 k z g ˜ ( k ) e i 2 π k z z J 1 ( 2 π k r ) d k cos φ ,
E ( r , z ) = 2 i π λ z exp ( i π r 2 2 λ z ) 0 A i ( r 0 r s ) exp ( a r 0 r s ) exp ( i π r 2 2 λ z ) J 0 ( 2 π r r λ z ) r d r ,
E ( 0 , z ) = 2 i π λ z A i ( r 0 r s ) exp ( a r 0 r s ) exp ( i π r 2 λ z ) r d r .
φ β ( y ) = 1 β e x 2 A i ( y x β ) d x = π β exp [ 1 4 β 3 ( y + 1 24 β 3 ) ] A i ( y β + 1 16 β 4 ) ,
1 β x e x 2 A i ( y x β ) d x = y φ β ( y ) + α 3 φ β ( y ) ,
E ( 0 , z ) = π exp ( P 1 ) [ A i ( P 2 ) ( 1 4 s 3 c 3 / 2 b c 1 / 2 ) A i ( P 2 ) s c 1 / 2 ] exp ( c b 2 + a r 0 s ) ,
P 1 = r 0 + b 4 c s 3 + 1 96 c 3 s 6 , P 2 = r 0 + b s + 1 16 c 2 s 4 .
α = 4 π R 3 ε p ε m ε p + 2 ε m ,
F g = 1 4 ε 0 ε m Re ( α ) | E 2 | ,
F s = ε 0 ε m 3 k 0 4 12 π | α 2 | | E 2 | ,
R = exp ( U / k B T ) 1 ,
U = 1 4 ε 0 ε m Re ( α ) Δ ( E 2 )

Metrics