Abstract

For hybrid integration of an optical chip with an electronic chip containing photo-diodes and processing electronics, light must be coupled from the optical to the electronic chip. This paper presents a method to fabricate quasi-total-internal-reflecting mirrors on an optical chip, placed at an angle of 45° with the chip surface, that enable 90° out-of-plane light coupling between flip-chip bonded chips. The fabrication method utilizes a metal-free, parallel process and is fully compatible with conventional fabrication of optical chips. The mirrors are created using anisotropic etching of 45° facets in a Si substrate, followed by fabrication of the optical structures. After removal of the mirror-defining Si structures by isotropic etching, the obtained interfaces between optical structure and air direct the output from optical waveguides to out-of-plane photo-detectors on the electronic chip, which is aimed to be flip-chip mounted on the optical chip. For transverse-electric (transverse-magnetic) polarization simulations predict a functional loss of 7% (15%), while 7% (18%) is measured.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011).
    [CrossRef] [PubMed]
  2. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
    [CrossRef]
  3. B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).
  4. T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron.22(6), 845–867 (1986).
    [CrossRef]
  5. K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
    [CrossRef]
  6. M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
    [CrossRef]
  7. F. Civitci, A. Driessen, and H. J. Hoekstra, “Light turning mirrors for hybrid integration of optical waveguides in SiON technology and CMOS based photo-detectors,” in Proceedings of The European Conference on Lasers and Electro-Optics, (European Physical Society, Mulhouse, 2011), paper: CE8_2.
    [CrossRef]
  8. F. Civitci, G. Sengo, M. Pollnau, A. Driessen, and W. Hoekstra, “Light Turning Mirrors in SiON Optical Waveguides for Hybrid Integration with CMOS Photo-detectors,” in Proceedings of the Annual Symposium of the IEEE Photonics Benelux Chapter, (Department of Information Technology, Ghent University, 2011), pp. 105–108.
    [CrossRef]
  9. F. Civitci, G. Sengo, A. Driessen, M. Pollnau, A.-J. Annema, and H. J. W. M. Hoekstra, ” 45° light turning mirrors for hybrid integration of silica optical waveguides and photo-detectors,” in Proceedings of 16th European Conference on Integrated Optic, (Insitut de Ciències Fotòniques, Barcelona, 2012), paper: 151.
  10. N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett.36(23), 4629–4631 (2011).
    [CrossRef] [PubMed]
  11. K. Wörhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol.17(8), 1401–1407 (1999).
    [CrossRef]
  12. F. Sun, M. G. Hussein, K. Wörhoff, G. Sengo, and A. Driessen, “B/P doping in application of silicon oxynitride based integrated optics,” in Proceedings of The European Conference on Lasers and Electro-Optics 2009, (European Physical Society, Mulhouse, 2009), paper: CE5_1.
    [CrossRef]
  13. D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
    [CrossRef]
  14. D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
    [CrossRef]
  15. K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Micromech. Syst.5(4), 256–269 (1996).
    [CrossRef]

2012 (2)

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

2011 (2)

2009 (1)

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

2005 (1)

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

2002 (1)

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

1999 (1)

1997 (1)

M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
[CrossRef]

1996 (1)

K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Micromech. Syst.5(4), 256–269 (1996).
[CrossRef]

1986 (1)

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron.22(6), 845–867 (1986).
[CrossRef]

Akca, B. I.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

Aljancic, U.

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

Amon, S.

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

Baclig, A. C.

Baets, R.

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

Bazylenko, M. V.

M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
[CrossRef]

Bolten, J.

Boning, D. S.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

Caspers, P. J.

Chang, L.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

Chmielak, B.

Choo-Smith, L. P.

Chu, P. L.

M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
[CrossRef]

Chung, J. E.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

Crevasse, A.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

de Ridder, R. M.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett.36(23), 4629–4631 (2011).
[CrossRef] [PubMed]

Dijkstra, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

Driessen, A.

Easter, W. G.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

Gauja, E.

M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
[CrossRef]

Gross, M.

M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
[CrossRef]

Heideman, R.

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

Hoekstra, H. J. W. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

Hollink, A. J. F.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

Ismail, N.

Kauppinen, L. J.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

Kurz, H.

Lambeck, P. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

K. Wörhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol.17(8), 1401–1407 (1999).
[CrossRef]

Leinse, A.

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

Matheisen, C.

Merget, F.

Misra, S.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

Mozek, M.

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

Muller, R. S.

K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Micromech. Syst.5(4), 256–269 (1996).
[CrossRef]

Nagel, M.

Nishihara, H.

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron.22(6), 845–867 (1986).
[CrossRef]

Ouma, D. O.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

Pham, S. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

Pollnau, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett.36(23), 4629–4631 (2011).
[CrossRef] [PubMed]

Puppels, G. J.

Resnik, D.

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

Ripperda, C.

Saxena, V.

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

Schrauwen, J.

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

Sengo, G.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

Suhara, T.

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron.22(6), 845–867 (1986).
[CrossRef]

Van Thourhout, D.

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

Vrtacnik, D.

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

Wahlbrink, T.

Waldow, M.

Watanabe, K.

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

Williams, K. R.

K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Micromech. Syst.5(4), 256–269 (1996).
[CrossRef]

Wörhoff, K.

Electron. Lett. (1)

K. Watanabe, J. Schrauwen, A. Leinse, D. Van Thourhout, R. Heideman, and R. Baets, “Total reflection mirrors fabricated on silica waveguides with focused ion beam,” Electron. Lett.45(17), 883–884 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron.22(6), 845–867 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization independent enhanced-resolution arrayed waveguide grating used in spectral domain optical low coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

IEEE Trans. Semicond. Manuf. (1)

D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, and A. Crevasse, “Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts,” IEEE Trans. Semicond. Manuf.15(2), 232–244 (2002).
[CrossRef]

J. Lightwave Technol. (2)

K. Wörhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices,” J. Lightwave Technol.17(8), 1401–1407 (1999).
[CrossRef]

M. V. Bazylenko, M. Gross, E. Gauja, and P. L. Chu, “Fabrication of light-turning mirrors in buried-channel silica waveguides for monolithic and hybrid integration,” J. Lightwave Technol.15(1), 148–153 (1997).
[CrossRef]

J. Micromech. Microeng. (1)

D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, and S. Amon, “The role of triton surfactant in anisotropic etching of {110} reflective planes on (100) silicon,” J. Micromech. Microeng.15(6), 1174–1183 (2005).
[CrossRef]

J. Micromech. Syst. (1)

K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. Micromech. Syst.5(4), 256–269 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuator B (1)

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk index concentration and direct label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuator B174, 602–608 (2012).
[CrossRef]

Other (4)

F. Civitci, A. Driessen, and H. J. Hoekstra, “Light turning mirrors for hybrid integration of optical waveguides in SiON technology and CMOS based photo-detectors,” in Proceedings of The European Conference on Lasers and Electro-Optics, (European Physical Society, Mulhouse, 2011), paper: CE8_2.
[CrossRef]

F. Civitci, G. Sengo, M. Pollnau, A. Driessen, and W. Hoekstra, “Light Turning Mirrors in SiON Optical Waveguides for Hybrid Integration with CMOS Photo-detectors,” in Proceedings of the Annual Symposium of the IEEE Photonics Benelux Chapter, (Department of Information Technology, Ghent University, 2011), pp. 105–108.
[CrossRef]

F. Civitci, G. Sengo, A. Driessen, M. Pollnau, A.-J. Annema, and H. J. W. M. Hoekstra, ” 45° light turning mirrors for hybrid integration of silica optical waveguides and photo-detectors,” in Proceedings of 16th European Conference on Integrated Optic, (Insitut de Ciències Fotòniques, Barcelona, 2012), paper: 151.

F. Sun, M. G. Hussein, K. Wörhoff, G. Sengo, and A. Driessen, “B/P doping in application of silicon oxynitride based integrated optics,” in Proceedings of The European Conference on Lasers and Electro-Optics 2009, (European Physical Society, Mulhouse, 2009), paper: CE5_1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-sectional view of the proposed device.

Fig. 2
Fig. 2

(a) Cross-section of the simplified mirror structure used in the simulation and (b) calculated intensity profile at the far field for TE polarization.

Fig. 3
Fig. 3

Wafer cross-sections corresponding to different steps in the fabrication process flow

Fig. 4
Fig. 4

(a) SEM cross section and (b) top view of Si structures etched by the optimized Si anisotropic etchant.

Fig. 5
Fig. 5

(a) SEM cross section obtained by dicing the sample through the center of an elevated Si structure and (b) top view photograph of part of the fabricated chip showing four mirrors with corresponding WGs as well as dummy pyramids.

Fig. 6
Fig. 6

Schematic of the optical setup used for measuring the mirror performance

Fig. 7
Fig. 7

Measured far-field beam profiles for (a) TE- and (b) TM-polarized light. The graphs show the calculated, measured, and ideal irradiance integrated over y, along the x-axis for (c) TE and (d) TM polarizations.

Fig. 8
Fig. 8

Measured and fitted irradiance, integrated over y, along the x-axis for (a) TE and (b) TM polarization

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I=A e 2 (x x c ) 2 w 2 .

Metrics