Abstract

We experimentally demonstrate cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal (Pr3+:Y2SiO5). We succeeded in observing very small absorption due to the ions appropriately prepared by optical pumping, which corresponds to the single-pass absorption of 4 × 10−6. We also observed a power law for the inhomogeneous broadening of optical transitions of ions in the crystal. Compared with a theoretical model, the result of the power law indicates that the dominant origin of the inhomogeneous broadening may be some charged defects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaplyanskii and R. M. Macfarlane, Spectroscopy of Solids Containing Rare-Earth Ions (North-Holland, 1987).
  2. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005).
  3. E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004).
    [CrossRef]
  4. E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005).
    [CrossRef] [PubMed]
  5. S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
    [CrossRef]
  6. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
    [CrossRef]
  7. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
    [CrossRef] [PubMed]
  8. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
    [CrossRef] [PubMed]
  9. M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
    [CrossRef]
  10. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
    [CrossRef] [PubMed]
  11. H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A74, 053410 (2006).
    [CrossRef]
  12. H. Goto and K. Ichimura, “Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal,” Phys. Rev. A75, 033404 (2007).
    [CrossRef]
  13. J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007).
    [CrossRef]
  14. A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
    [CrossRef]
  15. J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004).
    [CrossRef] [PubMed]
  16. K. Ichimura, “A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode,” Opt. Commun.196, 119–125 (2001).
    [CrossRef]
  17. M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
    [CrossRef]
  18. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
    [CrossRef]
  19. Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
    [CrossRef]
  20. D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009).
    [CrossRef]
  21. P. R. Berman, Cavity Quantum Electrodynamics(Academic, 1994).
  22. R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
    [CrossRef] [PubMed]
  23. C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
    [CrossRef] [PubMed]
  24. C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000).
    [CrossRef] [PubMed]
  25. C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
    [CrossRef]
  26. C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003).
    [CrossRef]
  27. K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A74, 033818 (2006).
    [CrossRef]
  28. D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011).
    [CrossRef]
  29. H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010).
    [CrossRef]
  30. A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys.41, 82–108 (1969).
    [CrossRef]
  31. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995).
    [CrossRef]
  32. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
    [CrossRef]
  33. M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012).
    [CrossRef]
  34. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
    [CrossRef]

2013

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

2012

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012).
[CrossRef]

2011

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011).
[CrossRef]

2010

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
[CrossRef] [PubMed]

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

2009

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
[CrossRef]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009).
[CrossRef]

2008

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

2007

H. Goto and K. Ichimura, “Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal,” Phys. Rev. A75, 033404 (2007).
[CrossRef]

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007).
[CrossRef]

2006

H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A74, 053410 (2006).
[CrossRef]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A74, 033818 (2006).
[CrossRef]

2005

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005).
[CrossRef] [PubMed]

2004

E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004).
[CrossRef] [PubMed]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

2003

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003).
[CrossRef]

2001

C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
[CrossRef]

K. Ichimura, “A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode,” Opt. Commun.196, 119–125 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

2000

C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000).
[CrossRef] [PubMed]

1995

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

1969

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys.41, 82–108 (1969).
[CrossRef]

Afzelius, M.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Alexander, A. L.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

Amari, A.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

Beaudoin, F.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

Beavan, S. E.

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
[CrossRef]

Beil, F.

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007).
[CrossRef]

Berman, P. R.

P. R. Berman, Cavity Quantum Electrodynamics(Academic, 1994).

Bhatia, P. S.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

Boggs, B.

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003).
[CrossRef]

C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000).
[CrossRef] [PubMed]

Bowers, J. A.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

Chanelière, T.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

Cone, R. L.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995).
[CrossRef]

Craig, A. E.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

de Boo, G. G.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

de Riedmatten, H.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Demsky, B.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Equall, R. W.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Fraval, E.

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004).
[CrossRef]

Gao, J.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Gisin, N.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Glasenapp, P.

M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012).
[CrossRef]

Goto, H.

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010).
[CrossRef]

H. Goto and K. Ichimura, “Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal,” Phys. Rev. A75, 033404 (2007).
[CrossRef]

H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A74, 053410 (2006).
[CrossRef]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A74, 033818 (2006).
[CrossRef]

Greiner, C.

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003).
[CrossRef]

C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
[CrossRef]

C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000).
[CrossRef] [PubMed]

Guo, G.-C.

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Halfmann, T.

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Han, Z.-F.

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
[CrossRef] [PubMed]

Hemmer, P. R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Huang, M.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

Ichimura, K.

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010).
[CrossRef]

H. Goto and K. Ichimura, “Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal,” Phys. Rev. A75, 033404 (2007).
[CrossRef]

H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A74, 053410 (2006).
[CrossRef]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A74, 033818 (2006).
[CrossRef]

K. Ichimura, “A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode,” Opt. Commun.196, 119–125 (2001).
[CrossRef]

Jacquier, B.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005).

Kaplyanskii, A. A.

A. A. Kaplyanskii and R. M. Macfarlane, Spectroscopy of Solids Containing Rare-Earth Ions (North-Holland, 1987).

Klein, J.

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007).
[CrossRef]

Klieber, R.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

Kolesov, R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Korystov, D.

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Kröll, S.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

Lauritzen, B.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Lauro, R.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

Le Gouët, J. L.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
[CrossRef] [PubMed]

Lin, N.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

Lin, X.-M.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Liu, G.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005).

Lloyd, S.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

Loftus, T.

C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
[CrossRef]

Longdell, J. J.

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
[CrossRef] [PubMed]

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
[CrossRef]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004).
[CrossRef] [PubMed]

Louchet, A.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

Lovric, M.

M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995).
[CrossRef]

A. A. Kaplyanskii and R. M. Macfarlane, Spectroscopy of Solids Containing Rare-Earth Ions (North-Holland, 1987).

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004).
[CrossRef] [PubMed]

McAuslan, D. L.

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011).
[CrossRef]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009).
[CrossRef]

McCallum, J. C.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

Meijer, J.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Minár, J.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Mossberg, T. W.

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003).
[CrossRef]

Mossberg, T.W.

C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
[CrossRef]

C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000).
[CrossRef] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Nakamura, S.

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010).
[CrossRef]

Nilsson, M.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

Rancic, M.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

Reuter, R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Rippe, L.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

Rogge, S.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

Sabooni, M.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

Sangouard, N.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Sellars, M. J.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
[CrossRef] [PubMed]

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
[CrossRef]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004).
[CrossRef] [PubMed]

Shahriar, M. S.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Simon, C.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Stavrias, N.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

Stöhr, R.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Stoneham, A. M.

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys.41, 82–108 (1969).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Suter, D.

M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

Walther, A.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

Wang, T.

C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Wrachtrup, J.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Xia, K.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Xiao, Y.-F.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
[CrossRef]

Yang, Y.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
[CrossRef]

Yin, C.

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

Zappe, A.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Appl. Phys. B: Photophys. Laser Chem.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983).
[CrossRef]

Nat. Commun.

R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012).
[CrossRef] [PubMed]

Nature

C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013).
[CrossRef] [PubMed]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010).
[CrossRef] [PubMed]

Opt. Commun.

K. Ichimura, “A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode,” Opt. Commun.196, 119–125 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001).
[CrossRef]

Opt. Exp.

H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010).
[CrossRef]

Phys. Lett. A

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004).
[CrossRef]

Phys. Rev. A

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A74, 053410 (2006).
[CrossRef]

H. Goto and K. Ichimura, “Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal,” Phys. Rev. A75, 033404 (2007).
[CrossRef]

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009).
[CrossRef]

C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003).
[CrossRef]

K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A74, 033818 (2006).
[CrossRef]

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011).
[CrossRef]

Phys. Rev. B

M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995).
[CrossRef]

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008).
[CrossRef]

Phys. Rev. Lett.

J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004).
[CrossRef] [PubMed]

J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005).
[CrossRef] [PubMed]

C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000).
[CrossRef] [PubMed]

C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001).
[CrossRef]

Rev. Mod. Phys.

A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys.41, 82–108 (1969).
[CrossRef]

Other

A. A. Kaplyanskii and R. M. Macfarlane, Spectroscopy of Solids Containing Rare-Earth Ions (North-Holland, 1987).

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005).

P. R. Berman, Cavity Quantum Electrodynamics(Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sample cavity. This is a monolithic Fabry-Perot cavity made of Pr:YSO, the dopant concentration of which is 1×10−3 at. %. Two cavity mirrors are formed on two surfaces of a crystal, which are perpendicular to the b axis of YSO crystal. (The cavity mode is parallel to the b axis.) One of the two mirrors is planar, and the other is spherical with a radius of curvature of about 9 mm. Both the mirrors have a diameter of 3 mm. The cavity length is about 8.9 mm. The radius of the mode waist, which is on the planar mirror, is about 10 μm. The free spectral range and full width at half maximum of the cavity are about 9.2 GHz and 2.7 MHz, respectively. (The finesse is about 3400.) The transmittances of the planar and spherical mirrors are about 0.014% and 0.018%, respectively. The intracavity loss not including the absorption loss due to Pr3+ ions is about 0.15%.

Fig. 2
Fig. 2

Experimental setup. AOM: acousto-optic modulator. AWG: arbitrary waveform generator. SA: spectrum analyzer. Amp: amplifier. PBS: polarizing beamsplitter. HWP: half-wave plate. QWP: quarter-wave plate. HBS: half beamsplitter. CL: cylindrical lens. PD: photodetector. ND: variable neutral density filter. LO: local oscillator. PS: power splitter.

Fig. 3
Fig. 3

Laser frequency shift. All the frequencies of the three beams (probe, LO, and re-pump) are controlled simultaneously by the single AOM with AWG1 (see Fig. 2). The origin of this frequency shift is set at the starting point of the spectrum measurement. The lower figures show how the repumping is achieved for an ion. The arrows with (a), (b), and (c) in the upper figure indicate the points at which the situations in the lower figures (a), (b), and (c) occur, respectively. See Fig. 4 for the detailed energy structure of Pr3+ ions in YSO.

Fig. 4
Fig. 4

Energy-level structure of Pr3+ ions in YSO [33].

Fig. 5
Fig. 5

Example of actual data. (a) Transmission spectra with and without the repump, S(ν) and S0(ν), respectively, measured by the balanced heterodyne detection. (The spectrum analyzer (SA) output of balanced heterodyne detection is proportional to the transmission power.) (b) (ν) (dB), which is obtained by subtracting S0(ν) (dBm) from S(ν) (dBm). (c) S ¯ ( ν ), which is obtained by renormalizing (ν) with the line fitted to (ν) in the range lower than 0.8 MHz (the dashed line in (b)).

Fig. 6
Fig. 6

Experimental results. The cavity modes are numbered so that Mode 0 corresponds to the mode nearest to the center of the inhomogeneous broadening and higher numbers correspond to modes with higher frequencies. Each result is the average of five measurements. The spectra used for each measurement are the ones obtained by 4 × 103 times accumulation for Modes 1 and −1 and 1 × 104 times accumulation for the other modes.

Fig. 7
Fig. 7

Power law for the inhomogeneous broadening. (a) The circles are the experimental data. The curve is the result of fitting the function d(n) = a|nn0|b to the data, where n is the continuous mode number, n0 is the value of n corresponding to the center of the inhomogeneous broadening, and a and b are constants. (b) Log-log plot of the same data as (a). n and n0 are converted to frequencies ν and ν0 with the FSR of the cavity (9.2 GHz). The circles and triangles correspond to the positive and negative mode numbers, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g max = μ n ω c 2 h ¯ ε 0 V = 2 μ n w c h ¯ ε 0 l c λ c ,
S 0 ( ν ) = C 0 4 T p T s ( L in + T p + T s ) 2 + ( 4 π ν / ν F S R ) 2 ,
S ( ν ) = C 4 T p T s [ L in + 2 A ( ν ) + T p + T s ] 2 + ( 4 π ν / ν F S R ) 2 ,
S ¯ ( ν ) S ( ν ) S 0 ( ν ) C C 0 ( 1 4 ( L in + T p + T s ) A ( ν ) ( L in + T p + T s ) 2 + ( 4 π ν / ν F S R ) 2 ) ,
S ¯ ( ν ) 1 2 π F A ( ν ) ,

Metrics