Abstract

Visible light communications (VLC) technology permits the exploitation of light-emitting diode (LED) luminaries for simultaneous illumination and broadband wireless communication. Optical orthogonal frequency-division multiplexing (O-OFDM) is a promising modulation technique for VLC systems, in which the real-valued O-OFDM baseband signal is used to modulate the instantaneous power of the optical carrier to achieve gigabit data rates. However, a major design challenge that limits the commercialization of VLC is how to incorporate the industry-preferred pulse-width modulation (PWM) light dimming technique while maintaining a broadband and reliable communication link. In this work, a novel signal format, reverse polarity O-OFDM (RPO-OFDM), is proposed to combine the fast O-OFDM communication signal with the relatively slow PWM dimming signal, where both signals contribute to the effective LED brightness. The advantages of using RPO-OFDM include, (1) the data rate is not limited by the frequency of the PWM signal, (2) the LED dynamic range is fully utilized to minimize the nonlinear distortion of the O-OFDM communication signal, and (3) the bit-error performance is sustained over a large fraction of the luminaire dimming range. In addition, RPO-OFDM offers a practical approach to utilize off-the-shelf LED drivers. We show results of numerical simulations to study the trade-offs between the PWM duty cycle, average electrical O-OFDM signal power, radiated optical flux as well as human perceived light.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
    [CrossRef]
  2. C. DiLouie, Advanced lighting controls: energy savings, productivity, technology and applications(The Fairmont Press, Inc., 2006).
  3. E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).
  4. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
    [CrossRef]
  5. H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consumer Electron.55(3), 1127–1134 (2009).
    [CrossRef]
  6. M. B. Rahaim, A. M. Vegni, and T. D. Little, “A hybrid radio frequency and broadcast visible light communication system,” in GC Wkshps, 792–796, (IEEE, 2011).
  7. H. Ma, L. Lampe, and S. Hranilovic, “Integration of indoor visible light and power line communication systems,” in ISPLC, 291–296, (IEEE, 2013).
  8. H. Le Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: challenges and possibilities,” in ICTON, 1–6, (IEEE, 2010).
  9. J. Vucic and K.-D. Langer, “High-speed visible light communications: State-of-the-art,” in OFC/NFOEC, 1–3, (IEEE, 2012).
  10. R. Mesleh, H. Elgala, and H. Haas, “Performance analysis of indoor OFDM optical wireless communication systems,” in WCNC, 1005–1010, (IEEE, 2012).
  11. E. Pisek, S. Rajagopal, and S. Abu-Surra, “Gigabit rate mobile connectivity through visible light communication,” in ICC, 3122–3127, (IEEE, 2012).
  12. P. Apse-Apsitis, A. Avotins, and L. Ribickis, “Wirelessly controlled LED lighting system,” in ENERGYCON, 952–956, (IEEE, 2012).
  13. Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Opt. Express20(17), 18861–18868 (2012).
    [CrossRef] [PubMed]
  14. G. Ntogari, T. Kamalakis, J. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw.3(1), 56–65 (2011).
    [CrossRef]
  15. Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
    [CrossRef]
  16. J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett.12(5), 343–345 (2008).
    [CrossRef]
  17. N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for optical wireless communications,” in ITW, 5–9, (IEEE, 2011).
  18. A. Nuwanpriya, A. Grant, S.-W. Ho, and L. Luo, “Position modulating OFDM for optical wireless communications,” in GC Wkshps, 1219–1223, (IEEE, 2012).
  19. D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless communication,” in VTC-Spring, 1–5, (IEEE, 2012).

2012 (1)

2011 (2)

2009 (2)

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consumer Electron.55(3), 1127–1134 (2009).
[CrossRef]

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

2008 (1)

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett.12(5), 343–345 (2008).
[CrossRef]

2006 (1)

Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
[CrossRef]

Abu-Surra, S.

E. Pisek, S. Rajagopal, and S. Abu-Surra, “Gigabit rate mobile connectivity through visible light communication,” in ICC, 3122–3127, (IEEE, 2012).

Apse-Apsitis, P.

P. Apse-Apsitis, A. Avotins, and L. Ribickis, “Wirelessly controlled LED lighting system,” in ENERGYCON, 952–956, (IEEE, 2012).

Armstrong, J.

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett.12(5), 343–345 (2008).
[CrossRef]

Avotins, A.

P. Apse-Apsitis, A. Avotins, and L. Ribickis, “Wirelessly controlled LED lighting system,” in ENERGYCON, 952–956, (IEEE, 2012).

Chen, J.

Chen, W.

Crawford, M. H.

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

DiLouie, C.

C. DiLouie, Advanced lighting controls: energy savings, productivity, technology and applications(The Fairmont Press, Inc., 2006).

Dong, T.

Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
[CrossRef]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consumer Electron.55(3), 1127–1134 (2009).
[CrossRef]

R. Mesleh, H. Elgala, and H. Haas, “Performance analysis of indoor OFDM optical wireless communication systems,” in WCNC, 1005–1010, (IEEE, 2012).

Faulkner, G.

H. Le Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: challenges and possibilities,” in ICTON, 1–6, (IEEE, 2010).

Fernando, N.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for optical wireless communications,” in ITW, 5–9, (IEEE, 2011).

Francois, C. P. S.

Gessmann, T.

E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).

Ghassemlooy, Z.

H. Le Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: challenges and possibilities,” in ICTON, 1–6, (IEEE, 2010).

Grant, A.

A. Nuwanpriya, A. Grant, S.-W. Ho, and L. Luo, “Position modulating OFDM for optical wireless communications,” in GC Wkshps, 1219–1223, (IEEE, 2012).

Gu, Y.

Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
[CrossRef]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consumer Electron.55(3), 1127–1134 (2009).
[CrossRef]

R. Mesleh, H. Elgala, and H. Haas, “Performance analysis of indoor OFDM optical wireless communication systems,” in WCNC, 1005–1010, (IEEE, 2012).

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless communication,” in VTC-Spring, 1–5, (IEEE, 2012).

Ho, S.-W.

A. Nuwanpriya, A. Grant, S.-W. Ho, and L. Luo, “Position modulating OFDM for optical wireless communications,” in GC Wkshps, 1219–1223, (IEEE, 2012).

Hong, Y.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for optical wireless communications,” in ITW, 5–9, (IEEE, 2011).

Hranilovic, S.

H. Ma, L. Lampe, and S. Hranilovic, “Integration of indoor visible light and power line communication systems,” in ISPLC, 291–296, (IEEE, 2013).

Kamalakis, T.

Kim, J. K.

E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).

Lampe, L.

H. Ma, L. Lampe, and S. Hranilovic, “Integration of indoor visible light and power line communication systems,” in ISPLC, 291–296, (IEEE, 2013).

Langer, K.-D.

J. Vucic and K.-D. Langer, “High-speed visible light communications: State-of-the-art,” in OFC/NFOEC, 1–3, (IEEE, 2012).

Le Minh, H.

H. Le Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: challenges and possibilities,” in ICTON, 1–6, (IEEE, 2010).

Little, T. D.

M. B. Rahaim, A. M. Vegni, and T. D. Little, “A hybrid radio frequency and broadcast visible light communication system,” in GC Wkshps, 792–796, (IEEE, 2011).

Luo, L.

A. Nuwanpriya, A. Grant, S.-W. Ho, and L. Luo, “Position modulating OFDM for optical wireless communications,” in GC Wkshps, 1219–1223, (IEEE, 2012).

Ma, H.

H. Ma, L. Lampe, and S. Hranilovic, “Integration of indoor visible light and power line communication systems,” in ISPLC, 291–296, (IEEE, 2013).

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consumer Electron.55(3), 1127–1134 (2009).
[CrossRef]

R. Mesleh, H. Elgala, and H. Haas, “Performance analysis of indoor OFDM optical wireless communication systems,” in WCNC, 1005–1010, (IEEE, 2012).

Narendran, N.

Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
[CrossRef]

Ntogari, G.

Nuwanpriya, A.

A. Nuwanpriya, A. Grant, S.-W. Ho, and L. Luo, “Position modulating OFDM for optical wireless communications,” in GC Wkshps, 1219–1223, (IEEE, 2012).

O’Brien, D.

H. Le Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: challenges and possibilities,” in ICTON, 1–6, (IEEE, 2010).

Pisek, E.

E. Pisek, S. Rajagopal, and S. Abu-Surra, “Gigabit rate mobile connectivity through visible light communication,” in ICC, 3122–3127, (IEEE, 2012).

Rahaim, M. B.

M. B. Rahaim, A. M. Vegni, and T. D. Little, “A hybrid radio frequency and broadcast visible light communication system,” in GC Wkshps, 792–796, (IEEE, 2011).

Rajagopal, S.

E. Pisek, S. Rajagopal, and S. Abu-Surra, “Gigabit rate mobile connectivity through visible light communication,” in ICC, 3122–3127, (IEEE, 2012).

Ribickis, L.

P. Apse-Apsitis, A. Avotins, and L. Ribickis, “Wirelessly controlled LED lighting system,” in ENERGYCON, 952–956, (IEEE, 2012).

Schmidt, B. J.

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett.12(5), 343–345 (2008).
[CrossRef]

Schubert, E. F.

E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).

Sinanovic, S.

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless communication,” in VTC-Spring, 1–5, (IEEE, 2012).

Sphicopoulos, T.

Tsonev, D.

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless communication,” in VTC-Spring, 1–5, (IEEE, 2012).

Vegni, A. M.

M. B. Rahaim, A. M. Vegni, and T. D. Little, “A hybrid radio frequency and broadcast visible light communication system,” in GC Wkshps, 792–796, (IEEE, 2011).

Viterbo, E.

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for optical wireless communications,” in ITW, 5–9, (IEEE, 2011).

Vucic, J.

J. Vucic and K.-D. Langer, “High-speed visible light communications: State-of-the-art,” in OFC/NFOEC, 1–3, (IEEE, 2012).

Walewski, J.

Wang, Z.

Wu, H.

Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
[CrossRef]

Yu, C.

Zhong, W.-D.

IEEE Commun. Lett. (1)

J. Armstrong and B. J. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN,” IEEE Commun. Lett.12(5), 343–345 (2008).
[CrossRef]

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag.49(9), 56–62 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

IEEE Trans. Consumer Electron. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consumer Electron.55(3), 1127–1134 (2009).
[CrossRef]

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Proc. SPIE (1)

Y. Gu, N. Narendran, T. Dong, and H. Wu, “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE6337, 63370J–63370J-7 (2006).
[CrossRef]

Other (12)

C. DiLouie, Advanced lighting controls: energy savings, productivity, technology and applications(The Fairmont Press, Inc., 2006).

E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).

N. Fernando, Y. Hong, and E. Viterbo, “Flip-OFDM for optical wireless communications,” in ITW, 5–9, (IEEE, 2011).

A. Nuwanpriya, A. Grant, S.-W. Ho, and L. Luo, “Position modulating OFDM for optical wireless communications,” in GC Wkshps, 1219–1223, (IEEE, 2012).

D. Tsonev, S. Sinanovic, and H. Haas, “Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless communication,” in VTC-Spring, 1–5, (IEEE, 2012).

M. B. Rahaim, A. M. Vegni, and T. D. Little, “A hybrid radio frequency and broadcast visible light communication system,” in GC Wkshps, 792–796, (IEEE, 2011).

H. Ma, L. Lampe, and S. Hranilovic, “Integration of indoor visible light and power line communication systems,” in ISPLC, 291–296, (IEEE, 2013).

H. Le Minh, Z. Ghassemlooy, D. O’Brien, and G. Faulkner, “Indoor gigabit optical wireless communications: challenges and possibilities,” in ICTON, 1–6, (IEEE, 2010).

J. Vucic and K.-D. Langer, “High-speed visible light communications: State-of-the-art,” in OFC/NFOEC, 1–3, (IEEE, 2012).

R. Mesleh, H. Elgala, and H. Haas, “Performance analysis of indoor OFDM optical wireless communication systems,” in WCNC, 1005–1010, (IEEE, 2012).

E. Pisek, S. Rajagopal, and S. Abu-Surra, “Gigabit rate mobile connectivity through visible light communication,” in ICC, 3122–3127, (IEEE, 2012).

P. Apse-Apsitis, A. Avotins, and L. Ribickis, “Wirelessly controlled LED lighting system,” in ENERGYCON, 952–956, (IEEE, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics