Abstract

We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express20(1), 364–376 (2012).
    [CrossRef] [PubMed]
  2. A. Kasapi, G. Y. Yin, and M. Jain, “Pulsed Ti:sapphire laser seeded off the gain peak,” Appl. Opt.35(12), 1999–2004 (1996).
    [CrossRef] [PubMed]
  3. G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron.10(8), 577–579 (1974).
    [CrossRef]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  5. I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
    [CrossRef]
  6. R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang, “Tunable infrared modulator and switch using Stark shift in step quantum wells,” IEEE Electron Device Lett.11(5), 227–229 (1990).
    [CrossRef]
  7. G. Almogy, A. Shakouri, and A. Yariv, “Observation of birefringence induced by intersubband transition in quantum wells,” Appl. Phys. Lett.63(20), 2720–2722 (1993).
    [CrossRef]
  8. B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express20(18), 20545–20550 (2012).
    [CrossRef] [PubMed]
  9. D. C. Hutchings and B. M. Holmes, “A waveguide polarisation toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
    [CrossRef]
  10. D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “Quantum cascade lasers with an integrated polarization mode converter,” Opt. Express20(23), 25711–25717 (2012).
    [CrossRef] [PubMed]
  11. A. Gerald and J. M. Burch, Introduction to Matrix Methods in Optics (John Wiley & Sons, 1975).
  12. A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
    [CrossRef]
  13. J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
    [CrossRef]
  14. T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
    [CrossRef]
  15. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kroning relation in nonlinear optics,” Opt. Quantum Electron.24(1), 1–30 (1992).
    [CrossRef]
  16. J. J. Bregenzer, S. McMaster, M. Sorel, B. M. Holmes, and D. C. Hutchings, “Compact polarization mode converter monolithically integrated within a semiconductor laser,” J. Lightwave Technol.27(14), 2732–2736 (2009).
    [CrossRef]
  17. J. Teissier, S. Laurent, C. Manquest, C. Sirtori, A. Bousseksou, J. R. Coudevylle, R. Colombelli, G. Beaudoin, and I. Sagnes, “Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers,” Opt. Express20(2), 1172–1183 (2012).
    [CrossRef] [PubMed]
  18. S. D. McDougall and C. N. Ironside, “Measurements of reverse and forward bias absorption and gain spectra in semiconductor laser material,” Electron. Lett.31(25), 2179–2181 (1995).
    [CrossRef]
  19. D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
    [CrossRef]
  20. N. C. Pistoni, “Simplified approach to the Jones calculus in retracing optical circuits,” Appl. Opt.34(34), 7870–7876 (1995).
    [CrossRef] [PubMed]
  21. D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single-mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
    [CrossRef]
  22. M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).
  23. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
    [CrossRef]
  24. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
    [CrossRef]
  25. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons Inc., 2007).

2012

2011

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

D. C. Hutchings and B. M. Holmes, “A waveguide polarisation toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
[CrossRef]

2009

2008

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

2006

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

2003

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

2000

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

1996

1995

S. D. McDougall and C. N. Ironside, “Measurements of reverse and forward bias absorption and gain spectra in semiconductor laser material,” Electron. Lett.31(25), 2179–2181 (1995).
[CrossRef]

N. C. Pistoni, “Simplified approach to the Jones calculus in retracing optical circuits,” Appl. Opt.34(34), 7870–7876 (1995).
[CrossRef] [PubMed]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1993

G. Almogy, A. Shakouri, and A. Yariv, “Observation of birefringence induced by intersubband transition in quantum wells,” Appl. Phys. Lett.63(20), 2720–2722 (1993).
[CrossRef]

1992

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kroning relation in nonlinear optics,” Opt. Quantum Electron.24(1), 1–30 (1992).
[CrossRef]

1990

R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang, “Tunable infrared modulator and switch using Stark shift in step quantum wells,” IEEE Electron Device Lett.11(5), 227–229 (1990).
[CrossRef]

1987

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

1974

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron.10(8), 577–579 (1974).
[CrossRef]

Aellen, T.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

Almogy, G.

G. Almogy, A. Shakouri, and A. Yariv, “Observation of birefringence induced by intersubband transition in quantum wells,” Appl. Phys. Lett.63(20), 2720–2722 (1993).
[CrossRef]

Axner, O.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Bar-Joseph, I.

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

Beaudoin, G.

Blaser, S.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

Bousseksou, A.

Bregenzer, J. J.

Capasso, F.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chemla, D. S.

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

Cho, A. Y.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chuang, S. L.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

Cockburn, J. W.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

Colombelli, R.

Conroy, R. S.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

Cottrell, D. M.

Coudevylle, J. R.

Davis, J. A.

Dhirhe, D.

D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “Quantum cascade lasers with an integrated polarization mode converter,” Opt. Express20(23), 25711–25717 (2012).
[CrossRef] [PubMed]

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single-mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

Evans, A. J.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Faist, J.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Friel, G. J.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

Giovannini, M.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

Gmachl, C.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kroning relation in nonlinear optics,” Opt. Quantum Electron.24(1), 1–30 (1992).
[CrossRef]

Hernandez, T. M.

Holmes, B. M.

Holtom, G.

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron.10(8), 577–579 (1974).
[CrossRef]

Hoyler, N.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

Hutchings, D. C.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

Ironside, C. N.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single-mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “Quantum cascade lasers with an integrated polarization mode converter,” Opt. Express20(23), 25711–25717 (2012).
[CrossRef] [PubMed]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

S. D. McDougall and C. N. Ironside, “Measurements of reverse and forward bias absorption and gain spectra in semiconductor laser material,” Electron. Lett.31(25), 2179–2181 (1995).
[CrossRef]

Jain, M.

Karunasiri, R. P. G.

R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang, “Tunable infrared modulator and switch using Stark shift in step quantum wells,” IEEE Electron Device Lett.11(5), 227–229 (1990).
[CrossRef]

Kasapi, A.

Kelly, A. E.

Kemp, A. J.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

Klingshirn, C.

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

Kluczynski, P.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Koren, U.

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

Lake, T. K.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

Laurent, S.

Lerttamrab, M.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

Lundqvist, S.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Manquest, C.

Manz, C.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

Marsh, J. H.

Maulini, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

McDougall, S. D.

S. D. McDougall and C. N. Ironside, “Measurements of reverse and forward bias absorption and gain spectra in semiconductor laser material,” Electron. Lett.31(25), 2179–2181 (1995).
[CrossRef]

McKee, A.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

McMaster, S.

Menzel, S.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

Meredith, W.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Mii, Y. J.

R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang, “Tunable infrared modulator and switch using Stark shift in step quantum wells,” IEEE Electron Device Lett.11(5), 227–229 (1990).
[CrossRef]

Miller, B. I.

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

Miller, D. A. B.

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

Moreno, I.

Naeem, M. A.

Nshii, C. C.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single-mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

Pistoni, N. C.

Razeghi, M.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Revin, D. G.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

Sagnes, I.

Sand, D.

Shakouri, A.

G. Almogy, A. Shakouri, and A. Yariv, “Observation of birefringence induced by intersubband transition in quantum wells,” Appl. Phys. Lett.63(20), 2720–2722 (1993).
[CrossRef]

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kroning relation in nonlinear optics,” Opt. Quantum Electron.24(1), 1–30 (1992).
[CrossRef]

Sinclair, B. D.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

Sirtori, C.

Sivco, D. L.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slight, T. J.

D. Dhirhe, T. J. Slight, B. M. Holmes, D. C. Hutchings, and C. N. Ironside, “Quantum cascade lasers with an integrated polarization mode converter,” Opt. Express20(23), 25711–25717 (2012).
[CrossRef] [PubMed]

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single-mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Slivken, S.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Sorel, M.

Stryland, E. W.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kroning relation in nonlinear optics,” Opt. Quantum Electron.24(1), 1–30 (1992).
[CrossRef]

Tandoi, G.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Teissier, J.

Terazzi, R.

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

Teschke, O.

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron.10(8), 577–579 (1974).
[CrossRef]

Wagner, J.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

Wang, K. L.

R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang, “Tunable infrared modulator and switch using Stark shift in step quantum wells,” IEEE Electron Device Lett.11(5), 227–229 (1990).
[CrossRef]

Westberg, J.

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Yang, Q.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

Yariv, A.

G. Almogy, A. Shakouri, and A. Yariv, “Observation of birefringence induced by intersubband transition in quantum wells,” Appl. Phys. Lett.63(20), 2720–2722 (1993).
[CrossRef]

Yin, G. Y.

Yu, J. S.

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

Zhang, S. Y.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. B

P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011).
[CrossRef]

Appl. Phys. Lett.

M. Lerttamrab, S. L. Chuang, C. Gmachl, D. L. Sivco, F. Capasso, and A. Y. Cho, “Linewidth enhancement factor of a type-I quantum-cascade laser,” Appl. Phys. Lett.94(8), 5426–5428 (2003).

T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006).
[CrossRef]

I. Bar‐Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, “Quantum‐confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(15), 1010–1012 (1987).
[CrossRef]

G. Almogy, A. Shakouri, and A. Yariv, “Observation of birefringence induced by intersubband transition in quantum wells,” Appl. Phys. Lett.63(20), 2720–2722 (1993).
[CrossRef]

Electron. Lett.

S. D. McDougall and C. N. Ironside, “Measurements of reverse and forward bias absorption and gain spectra in semiconductor laser material,” Electron. Lett.31(25), 2179–2181 (1995).
[CrossRef]

IEEE Electron Device Lett.

R. P. G. Karunasiri, Y. J. Mii, and K. L. Wang, “Tunable infrared modulator and switch using Stark shift in step quantum wells,” IEEE Electron Device Lett.11(5), 227–229 (1990).
[CrossRef]

IEEE J. Quantum Electron.

G. Holtom and O. Teschke, “Design of a birefringent filter for high-power dye lasers,” IEEE J. Quantum Electron.10(8), 577–579 (1974).
[CrossRef]

IEEE Photon. J.

D. C. Hutchings and B. M. Holmes, “A waveguide polarisation toolset design based on mode-beating,” IEEE Photon. J.3(3), 450–461 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

T. J. Slight, G. Tandoi, D. G. Revin, A. McKee, S. Y. Zhang, W. Meredith, J. W. Cockburn, and C. N. Ironside, “λ~3.35 µm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating,” IEEE Photon. Technol. Lett.23(7), 420–422 (2011).
[CrossRef]

IEEE Quantum Electron.

A. J. Kemp, G. J. Friel, T. K. Lake, R. S. Conroy, and B. D. Sinclair, “Polarization effects, birefringent filtering, and single-frequency operation in lasers containing a birefringent gain crystal,” IEEE Quantum Electron.36(2), 228–235 (2000).
[CrossRef]

J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 μm quantum cascade laser above room temperature,” IEEE Quantum Electron.44(8), 747–754 (2008).
[CrossRef]

J. Appl. Phys.

D. G. Revin, J. W. Cockburn, S. Menzel, Q. Yang, C. Manz, and J. Wagner, “Waveguide optical losses in InGaAs/AlAsSb quantum cascade laser,” J. Appl. Phys.103(4), 043106 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Quantum Electron.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kroning relation in nonlinear optics,” Opt. Quantum Electron.24(1), 1–30 (1992).
[CrossRef]

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

D. Dhirhe, T. J. Slight, C. C. Nshii, and C. N. Ironside, “A tunable single-mode double-ring quantum-cascade laser,” Semicond. Sci. Technol.27(9), 094007 (2012).
[CrossRef]

Other

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons Inc., 2007).

A. Gerald and J. M. Burch, Introduction to Matrix Methods in Optics (John Wiley & Sons, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic design for an integrated tuneable birefringent waveguide for QCLs, it shows the gain section (GS) and trenches in the upper part of the waveguide that form the polarisation mode convertors (PMCs) [9,10] between the PMCs is the differential phase shift (DPS) section where current can be applied to alter the phase relationship between the TE and TM modes. The approximate position of the active region is indicated in red.

Fig. 2
Fig. 2

(a) SEM (top view) of a PMC after ICP etching. (b) SEM image showing the etch profile of a PMC waveguide. (c) Photograph of the top of the processed ITBW device. Underneath the Gain Section (GS) and DPS section waveguide contact windows were open for current injection and rest of the structure as protected by Si3N4 and SiO2 insulating layers.

Fig. 3
Fig. 3

Shows a schematic of the experimental setup for characterising the QCL that includes an ITBW; the GS is injected with current i G and the ITBW has a current i DPS injected that electro-optically alters the birefringence of the DPS section. The polarisation is selected using a linear polariser and the output spectrum of device is measured using a FTIR spectrometer. All experiments were conducted at 250K QCL heat sink temperature.

Fig. 4
Fig. 4

(a) The TM spectrum of the sub-threshold EL spectra of a QCL incorporating a ITBW measured at various DC current densities injected into the DPS section. (b) Shows the sub-threshold TM EL spectra emitted from the facet next to the GS of the QCL-ITBW device.

Fig. 5
Fig. 5

(a) Experimental and Jones matrix model curve of the EL spectra of the ITBW device without current injected into the DPS section. (b) Measured gain spectra by injecting DC current into DPS section.

Fig. 6
Fig. 6

Shows wavelength dependence of the refractive index which is calculated from the data using a Kramers-Kronig-transformation of the gain spectra.

Fig. 7
Fig. 7

The experimental EL spectra and Jones matrix model curve fit of the ITBW device (a) iDPS = 0.33 kA/cm2 and (b) iDPS = 0.69 kA/cm2.

Fig. 8
Fig. 8

Shows the equivalent optical circuit of ITBW for full round trip consideration. Figure also indicates the different components of optical circuit. The (X) marks the starting point for the round trip analysis

Fig. 9
Fig. 9

(a)- (h), Comparison of QCL-ITBW device output wavelengths for different DC current densities injected into the DPS section.

Fig. 10
Fig. 10

Shows the change in polarisation angle as various current densities are injected into the DPS section- 90 degrees corresponds to TE linear polarisation; the corresponding wavelength response is given in Fig. 9. The experimental results are compared with the Jones matrix theory- see Eq. (9).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Δn(λ, i DPS )=Δn+Δ n IB ( i DPS )+Δ n IS (λ, i DPS )
[ cos 2 (θ)+ e iδ sin 2 (θ) (1 e iδ )cos(θ)sin(θ) (1 e iδ )cos(θ)sin(θ) sin 2 (θ)+ e iδ cos 2 (θ) ]
PMC= 1 2 [ 1 1 1 1 ]
DPS=[ 1 0 0 e i 2πΔn(λ, i DPS )L λ ]
T D =PMC.DPS.PMC
ITBW= T D .[ 0 1 ]= 1 2 [ 1 e i 2πΔn(λ, i DPS )L λ 1+ e i 2πΔn(λ, i DPS )L λ ]
I TM (λ, i DPS )= 1 2 | 1+ e i 2πΔn(λ, i DPS )L λ | 2
I TE (λ, i DPS )= 1 2 | 1 e i 2πΔn(λ, i DPS )L λ | 2
φ(λ, i DPS )=arctan( I TM (λ, i DPS ) I TE (λ, i DPS ) )
M.X=β.X
MR=[ 1 0 0 1 ]
[ m 1 m 4 m 3 m 2 ][ m 1 m 3 m 4 m 2 ]
PM C CP = 1 2 [ 1 1 1 1 ]
GS=[ 0 0 0 1 ]
M=MR.GS.PM C CP .DPS.PM C CP .MR.PMC.DPS.PMC.GS
=[ 0 0 0 0.5+0.5ei 4πΔn(λ, i DPS )L λ ]
M=[ 0 0 0 0.5+0.5ei 4πΔn(λ, i DPS )L λ ]e 4π n d L d λ
[ 0 0 0 0.5+0.5 e i 4π λ (Δn(λ, i DPS )+ n d L d ) ][ 0 1 ]=0.5+0.5 e i 4π λ (Δn(λ, i DPS )+ n d L d ) [ 0 1 ]
1 λ (Δn(λ, i DPS )+ n d L d )=0,0.5,1,1.5.....
δ DPS =δ( i DPS =0)+δ(λ, i DPS )
δ( i DPS =0)= 2πΔnL λ
δ(λ, i DPS )= 2πΔ n i DPS i DPS L λ

Metrics