Abstract

In this work we analyze experimentally and theoretically the properties of amplified spontaneous emission (ASE) in a rhodamine-6G-doped graded-index polymer optical fiber. A theoretical model based on the laser rate equations describes the ASE features successfully. The dependence of the ASE threshold and efficiency on fiber length is analyzed in detail.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
    [CrossRef]
  2. Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater.1(1), 22–28 (2009).
    [CrossRef]
  3. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems, 2nd ed. (Springer, 2008).
  4. T. Kaino, “Polymer optical fibers,” in Polymers for Lightwave and Integrated Optics (Marcel Deckker, Inc., 1992), Chap.1.
  5. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2007).
  6. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
    [CrossRef]
  7. S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).
  8. A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
    [CrossRef] [PubMed]
  9. A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
    [CrossRef]
  10. G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
    [CrossRef]
  11. A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
    [CrossRef]
  12. K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
    [CrossRef]
  13. T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fibre waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
    [CrossRef]
  14. T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
    [CrossRef]
  15. M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B78(3-4), 387–396 (2004).
    [CrossRef]
  16. M. Sheeba, K. J. Thomas, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Multimode laser emission from dye doped polymer optical fiber,” Appl. Opt.46(33), 8089–8094 (2007).
    [CrossRef] [PubMed]
  17. M. Rajesh, M. Sheeba, K. Geetha, C. P. G. Vallaban, P. Radhakrishnan, and V. P. N. Nampoori, “Fabrication and characterization of dye-doped polymer optical fiber as a light amplifier,” Appl. Opt.46(1), 106–112 (2007).
    [CrossRef] [PubMed]
  18. H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
    [CrossRef]
  19. G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
    [CrossRef]
  20. J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
    [CrossRef]
  21. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded, 2nd ed., (Marcel Dekker, Inc., 2001).
  22. J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
    [CrossRef]
  23. J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
    [CrossRef]

2011

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

2010

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

2009

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater.1(1), 22–28 (2009).
[CrossRef]

2008

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

2007

2004

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B78(3-4), 387–396 (2004).
[CrossRef]

2003

T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
[CrossRef]

2002

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fibre waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

2001

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

2000

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

1997

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

1996

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

1995

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

1988

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Ando, A.

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Arrue, J.

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Asai, M.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater.1(1), 22–28 (2009).
[CrossRef]

Ayesta, I.

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

Bazzana, L.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Berganza, A.

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

Bikandi, I.

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

Blau, W.

T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
[CrossRef]

Blau, W. J.

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fibre waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

Bradley, D. D. C.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Cabanillas-Gonzalez, J.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Chaplin, R. P.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

Chen, B.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Chu, P. L.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Dolotov, S. M.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Fujii, K.

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

Geetha, K.

Granpayeh, N.

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B78(3-4), 387–396 (2004).
[CrossRef]

Hanawa, T.

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Horhold, H.

T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
[CrossRef]

Illarramendi, M. A.

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

Imai, N.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Ito, H.

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Jimenez, F.

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

Jiménez, F.

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

Karimi, M.

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B78(3-4), 387–396 (2004).
[CrossRef]

Kobayashi, T.

T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
[CrossRef]

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fibre waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

Koike, Y.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater.1(1), 22–28 (2009).
[CrossRef]

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

Kopylova, T. N.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Kuriki, K.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Li, Z.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Liang, H.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Lidzey, D. G.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Maier, G. V.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Ming, H.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Monich, A. E.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Monich, E. A.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Moravvej-Farshi, M.

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B78(3-4), 387–396 (2004).
[CrossRef]

Morgado, J.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Muto, S.

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Nakatsuka, S.

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

Nampoori, V. P. N.

Nihei, E.

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

Nishihara, S.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Nishizawa, Y.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Nocivelli, A.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Okamoto, Y.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Peng, G. D.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

Podgaetskii, V. M.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Ponomareva, O. V.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Radhakrishnan, P.

Rajesh, M.

Sasaki, K.

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

Sheeba, M.

Ssasaki, K.

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

Svetlichnyi, V. A.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Tagaya, A.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

Tamura, T.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Teramoto, S.

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

Thomas, K. J.

Tillmann, H.

T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
[CrossRef]

Tsoi, W. C.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Vallaban, C. P. G.

Vallabhan, C. P. G.

Virgili, T.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Whitbread, T. W.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

Xia, R.

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Xiong, Z.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

Xu, J.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Yamamoto, T.

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, and K. Sasaki, “Basic Performance of an Organic Dye-Doped Polymer Optical Fiber Amplifier,” Appl. Opt.34(6), 988–992 (1995).
[CrossRef] [PubMed]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

Yoda, O.

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Zhang, Q.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Zhao, H.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Zheng, Z.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

Zubia, J.

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Karimi, N. Granpayeh, and M. Moravvej-Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B78(3-4), 387–396 (2004).
[CrossRef]

Appl. Phys. Lett.

K. Kuriki, T. Kobayashi, N. Imai, T. Tamura, S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Koike, and Y. Okamoto, “High-efficiency organic dye-doped polymer optical fiber lasers,” Appl. Phys. Lett.77(3), 331–333 (2000).
[CrossRef]

Electron. Commun. Jpn.

S. Muto, A. Ando, O. Yoda, T. Hanawa, and H. Ito, “Tunable laser using sheet of dye-doped plastic fibers,” Electron. Commun. Jpn.71(Part II), 47–52 (1988).

Electron. Lett.

T. Kobayashi and W. J. Blau, “Laser emission from conjugated polymer in fibre waveguide structure,” Electron. Lett.38(2), 67–68 (2002).
[CrossRef]

IEEE J. Quantum Electron.

T. Kobayashi, W. Blau, H. Tillmann, and H. Horhold, “Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber,” IEEE J. Quantum Electron.39(5), 664–672 (2003).
[CrossRef]

A. Tagaya, S. Teramoto, T. Yamamoto, K. Fujii, E. Nihei, Y. Koike, and K. Ssasaki, “Theoretical and Experimental Investigation of Rhodamine B-Doped Polymer Optical-Fiber Amplifiers,” IEEE J. Quantum Electron.31(12), 2215–2220 (1995).
[CrossRef]

IEEE Photonics J.

J. Arrue, F. Jiménez, M. A. Illarramendi, J. Zubia, I. Ayesta, I. Bikandi, and A. Berganza, “Computational Analysis of the Power Spectral Shifts and Widths Along Dye-Doped Polymer Optical Fibers,” IEEE Photonics J.2(3), 521–531 (2010).
[CrossRef]

J. Appl. Polym. Sci.

H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004).
[CrossRef]

J. Lightwave Technol.

G. D. Peng, P. L. Chu, Z. Xiong, T. W. Whitbread, and R. P. Chaplin, “Dye-doped step-index polymer optical fiber for broadband optical amplification,” J. Lightwave Technol.14(10), 2215–2223 (1996).
[CrossRef]

J. Nanophotonics

J. Clark, L. Bazzana, D. D. C. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophotonics2(1), 023504 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

A. Tagaya, T. Kobayashi, S. Nakatsuka, E. Nihei, K. Sasaki, and Y. Koike, “High gain and high power organic dye-doped polymer optical fiber amplifiers: Absorption and emission cross sections and gain characteristics,” Jpn. J. Appl. Phys.36(Part 1, No. 5A), 2705–2708 (1997).
[CrossRef]

Nat. Photonics

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010).
[CrossRef]

NPG Asia Mater.

Y. Koike and M. Asai, “The future of plastic optical fiber,” NPG Asia Mater.1(1), 22–28 (2009).
[CrossRef]

Opt. Fiber Technol.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Polymers

J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes,” Polymers3(4), 1162–1180 (2011).
[CrossRef]

Quantum Electron.

G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibres doped with organic dyes: Generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007).
[CrossRef]

Other

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded, 2nd ed., (Marcel Dekker, Inc., 2001).

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems, 2nd ed. (Springer, 2008).

T. Kaino, “Polymer optical fibers,” in Polymers for Lightwave and Integrated Optics (Marcel Deckker, Inc., 1992), Chap.1.

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Normalized radial distributions of light power density (ψ(r)/ψ(0)) and of dopant density (N(r)/N(0)) in the fiber core.

Fig. 2
Fig. 2

Experimental set-up used to measure the emitted intensity in the doped GI POF. Legend: Nd:YAG: laser; SH: second harmonic generator; S: harmonic beam separator; I: iris; VF: variable absorptive neutral densitive filter; L1: bi-convex lens (f ' = + 50 cm); xy POS: xy-micropositioner; FH: filter holder; FOS: fiber-optic spectrometer.

Fig. 3
Fig. 3

Absorption spectrum and two normalized emission spectra at different pump energies for our R6G-doped GI POF. The emission spectra have been obtained by exciting the fiber longitudinally with L = 2.5 cm at pump energies below the threshold (fluorescence, Ep = 1.5 μJ) and above the threshold (ASE, Ep = 3.7 mJ).

Fig. 4
Fig. 4

Output emission energy integrated over all wavelengths as a function of pump energy in our doped GI POFs of various fiber lengths. The solid lines are the linear fits of the experimental points.

Fig. 5
Fig. 5

(a) Shift of the average wavelength of the emission spectra, and (b) narrowing of their widths, as functions of pump energy in our doped GI POFs of various fiber lengths. The dashed lines serve to guide the eye.

Fig. 6
Fig. 6

Threshold (a) and efficiency (b) as functions of fiber length. Circles: experimental points. Solid lines with crosses: theoretical curves with γ = 1. Solid lines with triangles: theoretical curves with γ = 1.7. Solid lines with squares: theoretical curves with γ = 3. The theoretical efficiencies decay exponentially with coefficients: α = 0.12 cm−1 (γ = 1), α = 0.21 cm−1 (γ = 1.7), α = 0.38 cm−1 (γ = 3). The experimental values of the efficiency in (b) have been normalized to the theoretical curve with γ = 1.7, which is the value that corresponds to our measured fiber.

Fig. 7
Fig. 7

Spatial distribution of N2 for the overlapping factors considered. (a) Pump energy below threshold, Ep = 0.01 mJ. (b) Pump energy above threshold, Ep = 1.5 mJ.

Fig. 8
Fig. 8

Variation of threshold with fiber length obtained from Eq. (6). Solid line with crosses: curve with γ = 1. Solid line with triangles: curve with γ = 1.7. Solid line with squares: curve with γ = 3. The calculations have been performed with Acore = π 0.32 mm2, τ = 4.8 ns, N = 1.81 × 1022 m−3, σ a(λp = 532nm) = 4.27 × 10−20 m2, σ a(λk = 582nm) = 1.63 × 10−20 m2, and σ e(λk = 582nm) = 3.01 × 10−21 m2.

Fig. 9
Fig. 9

(a) Shift of the average wavelength of the emission spectra and (b) narrowing of their widths as functions of the pump energy in our doped GI POFs for three fiber lengths. Symbols: experimental points. Solid and dashed lines: theoretical calculations with γ = 1.7. The same parameters as in Fig. 6 have been employed.

Fig. 10
Fig. 10

Decrease of ASE intensity with time when the fiber is pumped with Ep = 3 mJ, for L = 2.5cm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P p z = σ a ( λ p ) N 1 P p γ 1 v z P p t
N 2 t = N 2 τ ( σ e ( λ k ) h(c/ λ k ) A core ) N 2 Pγ+( σ a ( λ p ) h(c/ λ p ) A core ) N 1 P p γ+( σ a ( λ k ) h(c/ λ k ) A core ) N 1 Pγ
P z = σ e ( λ k ) N 2 Pγ σ a ( λ k ) N 1 Pγ 1 v z P t + N 2 τ ( h c λ k ) σ sp e ( λ k )β A core
P p (z=0,t)= E p σ 2π e (t t peak ) 2 2 σ 2
P p th' = A core (1β) σ a ( λ p )τγ ( h c λ p )
P p th'' (L)= A core N σ a ( λ k )( h c λ p )L τ( σ a ( λ k )+ σ e ( λ k ) )( 1exp( γN σ a ( λ p )L( σ a ( λ k ) σ a ( λ k )+ σ e ( λ k ) 1 ) ) )
η(L)= ΔP Δ P p = P(L) P p (L) ( σ a ( λ k ) σ e ( N 2 / N 1 ) σ a ( λ p ) )P(L)exp(γ σ a ( λ k ) N 1 L)

Metrics