Abstract

High-density single-mode polymer waveguides were fabricated for chip-to-chip optical interconnection. The waveguides were designed as minimized mode field diameters for the lowest inter-channel crosstalk caused by mode coupling. The optimum relative index difference chosen was 1.2% to ensure compatibility with low crosstalk and wide fabrication tolerances. The 60-mm-length linear waveguides demonstrated a low propagation loss of 0.6 dB/cm and −45 dB crosstalk at 1310 nm. Also, a new crosstalk mechanism for a curved waveguide was revealed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (online)) (Optical Society of America, 2010), paper PDIWI5.
  2. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on a single silicon substrate” in European Conference and Exposition on Optical Communications, Technical Digest (CD) (Optical Society of America, 2011), paper We.9.LeSaleve.4.
    [CrossRef]
  3. U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
    [CrossRef]
  4. R. D. Williams, T. Sze, D. Huang, S. Pannala, and C. Fang, “Server memory roadmap” presented at JEDEC Server Memory Forum Shenzhen, China, 1 Mar. 2012. http://www.jedec.org/sites/default/files/Ricki_Dee_Williams-Final_0.pdf
  5. International Technology Roadmap for Semiconductors, Assembly & Packaging, 2012 Tables, http://www.itrs.net/Links/2012ITRS/2012Tables/AssemblyPkg_2012Tables.xlsx
  6. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel optical waveguides and directional couplers in GaAs-imbedded and ridged,” Appl. Opt.13(2), 327–330 (1974).
    [CrossRef] [PubMed]
  7. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).
    [CrossRef]
  8. S. Tang, R. T. Chen, and M. A. Peskin, “Packing density and interconnection length of a highly parallel optical interconnect using polymer-based, single-mode bus arrays,” Opt. Eng.33(5), 1581–1586 (1994).
    [CrossRef]
  9. T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
    [CrossRef]
  10. D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
    [CrossRef]
  11. S. Takenobu and Y. Morizawa, “Long spiral optical waveguides using ultra low loss perfluorinated polymer for optical interconnect” in Optical Fiber Communication Conference, Technical Digest (CD)) (Optical Society of America, 2009), paper JThA24.
    [CrossRef]
  12. S. Takenobu, “Low loss heat resistant fluorinated polymer optical waveguides for optical interconnects” in Optical Fiber Communication Conference, Technical Digest (CD)) (Optical Society of America, 2010), paper OMV3.
    [CrossRef]

2012 (1)

D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
[CrossRef]

2003 (1)

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

1998 (1)

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

1994 (1)

S. Tang, R. T. Chen, and M. A. Peskin, “Packing density and interconnection length of a highly parallel optical interconnect using polymer-based, single-mode bus arrays,” Opt. Eng.33(5), 1581–1586 (1994).
[CrossRef]

1974 (1)

1969 (1)

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).
[CrossRef]

Amano, M.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Brauer, A.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Cai, D.

D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
[CrossRef]

Chen, C.

D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
[CrossRef]

Chen, R. T.

S. Tang, R. T. Chen, and M. A. Peskin, “Packing density and interconnection length of a highly parallel optical interconnect using polymer-based, single-mode bus arrays,” Opt. Eng.33(5), 1581–1586 (1994).
[CrossRef]

Dannberg, P.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Frohlich, L.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Garmire, E.

Garvin, H. L.

Hikita, M.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Houbertz, R.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Hunsperger, R. G.

Lee, C.

D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).
[CrossRef]

Peskin, M. A.

S. Tang, R. T. Chen, and M. A. Peskin, “Packing density and interconnection length of a highly parallel optical interconnect using polymer-based, single-mode bus arrays,” Opt. Eng.33(5), 1581–1586 (1994).
[CrossRef]

Popall, M.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Shuto, Y.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Somekh, S.

Streppel, U.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Tang, S.

S. Tang, R. T. Chen, and M. A. Peskin, “Packing density and interconnection length of a highly parallel optical interconnect using polymer-based, single-mode bus arrays,” Opt. Eng.33(5), 1581–1586 (1994).
[CrossRef]

Tomaru, S.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Wachter, C.

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Wang, T.

D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
[CrossRef]

Watanabe, T.

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Yariv, A.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).
[CrossRef]

IEEE Photon. J. (1)

D. Cai, C. Chen, C. Lee, and T. Wang, “Study of coupling length of concentrically curved waveguides,” IEEE Photon. J.4(1), 80–85 (2012).
[CrossRef]

J. Appl. Phys. (1)

T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys.83(2), 639–649 (1998).
[CrossRef]

Opt. Eng. (1)

S. Tang, R. T. Chen, and M. A. Peskin, “Packing density and interconnection length of a highly parallel optical interconnect using polymer-based, single-mode bus arrays,” Opt. Eng.33(5), 1581–1586 (1994).
[CrossRef]

Opt. Mater. (1)

U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Frohlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic–organic hybrid) polymers,” Opt. Mater.21(1-3), 475–483 (2003).
[CrossRef]

Other (6)

R. D. Williams, T. Sze, D. Huang, S. Pannala, and C. Fang, “Server memory roadmap” presented at JEDEC Server Memory Forum Shenzhen, China, 1 Mar. 2012. http://www.jedec.org/sites/default/files/Ricki_Dee_Williams-Final_0.pdf

International Technology Roadmap for Semiconductors, Assembly & Packaging, 2012 Tables, http://www.itrs.net/Links/2012ITRS/2012Tables/AssemblyPkg_2012Tables.xlsx

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers” in Integrated Photonics Research, Silicon and Nanophotonics, Technical Digest (online)) (Optical Society of America, 2010), paper PDIWI5.

Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on a single silicon substrate” in European Conference and Exposition on Optical Communications, Technical Digest (CD) (Optical Society of America, 2011), paper We.9.LeSaleve.4.
[CrossRef]

S. Takenobu and Y. Morizawa, “Long spiral optical waveguides using ultra low loss perfluorinated polymer for optical interconnect” in Optical Fiber Communication Conference, Technical Digest (CD)) (Optical Society of America, 2009), paper JThA24.
[CrossRef]

S. Takenobu, “Low loss heat resistant fluorinated polymer optical waveguides for optical interconnects” in Optical Fiber Communication Conference, Technical Digest (CD)) (Optical Society of America, 2010), paper OMV3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Concept of high-density optical interconnection.

Fig. 2
Fig. 2

Mode field diameter (MFD) of fundamental mode of square core at 1310 nm. Broken line shows the smaller MFD than surrounding area.

Fig. 3
Fig. 3

Inter-channel crosstalk vs. a ratio of propagation length z to coupling length L calculated from Eqs. (1), (3), and (4).

Fig. 4
Fig. 4

Relationship between waveguide pitch and coupling lengthfor a square core at 1310 nm. The red area indicates the target for high-density and low-crosstalk waveguides.

Fig. 5
Fig. 5

Changes of MFD due to waveguide parameters, (a) core size and (b) refractive index.

Fig. 6
Fig. 6

SEM images of fabricated high-density polymer waveguides. (a),(b), and (c) are 10 μm pitch, 20 μm pitch, 25 μm pitch, respectively.

Fig. 7
Fig. 7

SEM images of waveguide elongation by connecting exposed i-line stepper.

Fig. 8
Fig. 8

Compensation pattern at the double-exposure regions. (a) Waveguides whose pitches were less than 30 μm had fan-out structures (b) Wide pitch waveguides were straight patterns at the connections.

Fig. 9
Fig. 9

Propagation losses calculated from 20 to 40 mm length fabricated waveguides at 1260–1360 nm.

Fig. 10
Fig. 10

Adjacent crosstalk of the fabricated waveguides. (a) Effects of waveguide pitches; orange and green lines show Eqs. (1) and (2), respectively. (b) Wavelength properties at 20 μm pitch.

Fig. 11
Fig. 11

SEM image of 45 degree + 45 degree S-bend waveguides with radiuses of 1 mm.

Fig. 12
Fig. 12

Bending loss of the fabricated waveguides at 1310 nm. The simulated curve was found using the measured refractive indices.

Fig. 13
Fig. 13

(a) Measured and BPM simulated bending crosstalk for the fabricated waveguides at the 25μm pitch at 1310 nm. (b) Coupling into the waveguides for external beam using ray-tracing technique.

Tables (2)

Tables Icon

Table 1 List of Simulated Parameters

Tables Icon

Table 2 Refractive indices of high-density waveguides

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P= P 0 sin 2 ( κz )= P 0 ( κz ) 2 = P 0 ( πz 2L ) 2 .
P= P 0 2 sin 2 ( 2 κz )= P 0 ( κz ) 2 = P 0 ( πz 2L ) 2 .
P coh =4 P 0 ( κz 1κz ) 2 =4 P 0 ( π( z/L ) 2π( z/L ) ) 2 .
P inc =2 P 0 ( κz 1κz ) 2 =2 P 0 ( π( z/L ) 2π( z/L ) ) 2 .

Metrics