Abstract

A novel spectroscopic sensor based on an optofluidic liquid jet waveguide is presented. In this device, a liquid jet waveguide is generated with the solution under analysis. This stream, exploiting total internal reflection, acts as an optical waveguide confining the autofluorescence light produced by chemical or biological samples when opportunely excited. Using a self-aligned configuration, the liquid jet is directly coupled with a multimode optical fiber collecting the fluorescence towards the detection system. Experimental measurements have been performed using an UV excitation source on water solutions containing representative water pollutants as aromatic hydrocarbons or bacteria showing very low limit of detection.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74(8), 3597–3619 (2003).
    [CrossRef]
  2. R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
    [CrossRef] [PubMed]
  3. P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
    [CrossRef]
  4. D. Patra, “Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons,” Appl. Spectrosc. Rev.38(2), 155–185 (2003).
    [CrossRef]
  5. P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
    [CrossRef]
  6. L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
    [CrossRef] [PubMed]
  7. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
    [CrossRef] [PubMed]
  8. C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
    [CrossRef] [PubMed]
  9. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express12(26), 6446–6455 (2004).
    [CrossRef] [PubMed]
  10. A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
    [CrossRef] [PubMed]
  11. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express15(20), 12783–12791 (2007).
    [CrossRef] [PubMed]
  12. A. E. Vasdekis and G. P. J. Laporte, “Enhancing single molecule imaging in optofluidics and microfluidics,” Int. J. Mol. Sci.12(12), 5135–5156 (2011).
    [CrossRef] [PubMed]
  13. J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012).
    [CrossRef] [PubMed]
  14. G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett.37(24), 5115–5117 (2012).
    [CrossRef] [PubMed]
  15. B. Richerzhagen, “Chip singulation process with a water-jet guided laser,” Solid State Technol.44, 25–28 (2001).
  16. S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
    [CrossRef]
  17. J. W. S. Rayleigh, “On the instability of jets,” Proc. Lond. Math. Soc.10(1), 4–13 (1878).
    [CrossRef]
  18. D. Colladon, “On the reflections of a ray of light inside a parabolic liquid stream,” CR (East Lansing, Mich.)15, 800–802 (1842).
  19. R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
    [CrossRef]
  20. P. C. H. Li, Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery (Taylor and Francis/CRC Press 2006), Chap. 7.
  21. K. M. Awati and T. Howes, “Stationary waves on cylindrical fluid jets,” Am. J. Phys.64(6), 808–811 (1996).
  22. Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
    [CrossRef] [PubMed]
  23. S. Rajendran, M. A. Jog, and R. M. Manglik, “Experimental investigation of liquid jet breakup at low Weber number” in ILASS Americas,24th Annual Conference on Liquid Atomization and Spray Systems, (San Antonio, TX, 2012), pp. 1–6.
  24. J. Inczedy, T. Lengyel, and A. M. Ure, Compendium of analytical nomenclature. The orange book, 3rd edn., (Blackwell, Oxford 1998).
  25. L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
    [CrossRef]
  26. J. L. Shennan, “Hydrocarbons as substrates in industrial fermentation,” in Petroleum Microbiology R.M. Atlas, ed. (Macmillan Publishing Company, 1984).
  27. N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001).
    [CrossRef] [PubMed]
  28. E. T. Arakawa, N. V. Lavrik, and P. G. Datskos, “Detection of anthrax simulants with microcalorimetric spectroscopy: Bacillus subtilis and Bacillus cereus spores,” Appl. Opt.42(10), 1757–1762 (2003).
    [CrossRef] [PubMed]
  29. A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
    [CrossRef] [PubMed]
  30. R. Meidinger, R. W. St. Germain, V. Dohotariu, and G. D. Gillispie, Field Screening Methods for Hazardous Wastes and Toxic Chemicals (Air & Waste Management Association, 1993), Chap. Fluorescence of Aromatic Hydrocarbons in Aqueous Solutions.
  31. J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
    [CrossRef]
  32. U.S. Environmental Protection Agency, 2012Edition of the Drinking Water Standards and Health Advisories, EPA 822-S-12–001, http://water.epa.gov/action/advisories/drinking/upload/dwstandards2012.pdf .

2012

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012).
[CrossRef] [PubMed]

G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett.37(24), 5115–5117 (2012).
[CrossRef] [PubMed]

2011

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

A. E. Vasdekis and G. P. J. Laporte, “Enhancing single molecule imaging in optofluidics and microfluidics,” Int. J. Mol. Sci.12(12), 5135–5156 (2011).
[CrossRef] [PubMed]

C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011).
[CrossRef] [PubMed]

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

2009

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

2007

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

2004

2003

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74(8), 3597–3619 (2003).
[CrossRef]

D. Patra, “Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons,” Appl. Spectrosc. Rev.38(2), 155–185 (2003).
[CrossRef]

E. T. Arakawa, N. V. Lavrik, and P. G. Datskos, “Detection of anthrax simulants with microcalorimetric spectroscopy: Bacillus subtilis and Bacillus cereus spores,” Appl. Opt.42(10), 1757–1762 (2003).
[CrossRef] [PubMed]

2002

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

2001

B. Richerzhagen, “Chip singulation process with a water-jet guided laser,” Solid State Technol.44, 25–28 (2001).

N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001).
[CrossRef] [PubMed]

1998

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

1996

K. M. Awati and T. Howes, “Stationary waves on cylindrical fluid jets,” Am. J. Phys.64(6), 808–811 (1996).

1995

R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
[CrossRef]

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

1982

S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
[CrossRef]

1878

J. W. S. Rayleigh, “On the instability of jets,” Proc. Lond. Math. Soc.10(1), 4–13 (1878).
[CrossRef]

1842

D. Colladon, “On the reflections of a ray of light inside a parabolic liquid stream,” CR (East Lansing, Mich.)15, 800–802 (1842).

Arakawa, E. T.

Awati, K. M.

K. M. Awati and T. Howes, “Stationary waves on cylindrical fluid jets,” Am. J. Phys.64(6), 808–811 (1996).

Babintsev, V. A.

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

Baker, A.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Barth, M.

Belovolova, L. V.

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

Benson, O.

Bernini, R.

Billinton, N.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001).
[CrossRef] [PubMed]

Bloch, J.

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

Brinkman, U. A. Th.

R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
[CrossRef]

Bünting, U.

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

Chen, A.

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Colladon, D.

D. Colladon, “On the reflections of a ray of light inside a parabolic liquid stream,” CR (East Lansing, Mich.)15, 800–802 (1842).

Datskos, P. G.

Dufour, E.

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

Eberle, M. M.

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Folestad, S.

S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
[CrossRef]

Fromm, D. P.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74(8), 3597–3619 (2003).
[CrossRef]

Galle, B.

S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
[CrossRef]

Gangopadhyay, S.

Gerba, C. P.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Germaine, J.

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

Glushkov, M. V.

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

Golovanov, V. I.

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

Gooijer, C.

R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
[CrossRef]

Haas, C. N.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Hambly, A.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Hargis, P. J.

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

Hashsham, S. A.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Hawkins, A. R.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Hemond, H.

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

Henderson, R. K.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Herzog, A. B.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Howes, T.

K. M. Awati and T. Howes, “Stationary waves on cylindrical fluid jets,” Am. J. Phys.64(6), 808–811 (1996).

Huskens, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
[CrossRef] [PubMed]

Jenkins, M.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

Johnson, B.

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

Johnson, L.

S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
[CrossRef]

Josefsson, B.

S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
[CrossRef]

Karlitschek, P.

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

Khan, S. J.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Kim, H. C.

Klinkhammer, S.

Knight, A. W.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001).
[CrossRef] [PubMed]

Kuswandi, B.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
[CrossRef] [PubMed]

Laporte, G. P. J.

A. E. Vasdekis and G. P. J. Laporte, “Enhancing single molecule imaging in optofluidics and microfluidics,” Int. J. Mol. Sci.12(12), 5135–5156 (2011).
[CrossRef] [PubMed]

Lavrik, N. V.

Leake, K.

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

Leblanc, L.

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

Lee, L. M.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012).
[CrossRef] [PubMed]

Lemmer, U.

Lewitzka, F.

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

Liu, S.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Lunt, E. J.

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Mappes, T.

Marowsky, G.

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

McLennan, S. D.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Measor, P.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

Miller, R. D.

Moerner, W. E.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74(8), 3597–3619 (2003).
[CrossRef]

Murphy, K. R.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Niederkrüger, M.

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

Nuriman, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
[CrossRef] [PubMed]

Pandey, A. K.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Patra, D.

D. Patra, “Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons,” Appl. Spectrosc. Rev.38(2), 155–185 (2003).
[CrossRef]

Persichetti, G.

Radloff, R. J.

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

Rayleigh, J. W. S.

J. W. S. Rayleigh, “On the instability of jets,” Proc. Lond. Math. Soc.10(1), 4–13 (1878).
[CrossRef]

Richerzhagen, B.

B. Richerzhagen, “Chip singulation process with a water-jet guided laser,” Solid State Technol.44, 25–28 (2001).

Risk, W. P.

Rose, J. B.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Rudenko, M. I.

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Schmidt, H.

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

Sinfield, J.

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

Smolka, S.

Sobering, T. J.

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

Stuetz, R. M.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Temkin, H.

Testa, G.

Tisone, G. C.

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

van de Nesse, R. J.

R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
[CrossRef]

Vannahme, C.

Vasdekis, A. E.

A. E. Vasdekis and G. P. J. Laporte, “Enhancing single molecule imaging in optofluidics and microfluidics,” Int. J. Mol. Sci.12(12), 5135–5156 (2011).
[CrossRef] [PubMed]

Velthorst, N. H.

R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
[CrossRef]

Verboom, W.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
[CrossRef] [PubMed]

Vinogradov, E. A.

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

Wagner, J. S.

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

Wu, J.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012).
[CrossRef] [PubMed]

Young, S. A.

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

Zheng, G.

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012).
[CrossRef] [PubMed]

Am. J. Phys.

K. M. Awati and T. Howes, “Stationary waves on cylindrical fluid jets,” Am. J. Phys.64(6), 808–811 (1996).

Anal. Biochem.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001).
[CrossRef] [PubMed]

Anal. Chem.

S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982).
[CrossRef]

Anal. Chim. Acta

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007).
[CrossRef] [PubMed]

Appl. Environ. Microbiol.

A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998).
[CrossRef]

Appl. Phys. Lett.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011).
[CrossRef] [PubMed]

Appl. Spectrosc. Rev.

D. Patra, “Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons,” Appl. Spectrosc. Rev.38(2), 155–185 (2003).
[CrossRef]

CR (East Lansing, Mich.)

D. Colladon, “On the reflections of a ray of light inside a parabolic liquid stream,” CR (East Lansing, Mich.)15, 800–802 (1842).

FEMS Microbiol. Lett.

L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002).
[CrossRef] [PubMed]

Int. J. Mol. Sci.

A. E. Vasdekis and G. P. J. Laporte, “Enhancing single molecule imaging in optofluidics and microfluidics,” Int. J. Mol. Sci.12(12), 5135–5156 (2011).
[CrossRef] [PubMed]

J. Chromatogr. A

R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995).
[CrossRef]

J. Environ. Eng.

J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007).
[CrossRef]

Lab Chip

J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012).
[CrossRef] [PubMed]

A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Wave Phenom.

L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009).
[CrossRef]

Proc. Lond. Math. Soc.

J. W. S. Rayleigh, “On the instability of jets,” Proc. Lond. Math. Soc.10(1), 4–13 (1878).
[CrossRef]

Proc. SPIE

P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995).
[CrossRef]

Rev. Sci. Instrum.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74(8), 3597–3619 (2003).
[CrossRef]

Solid State Technol.

B. Richerzhagen, “Chip singulation process with a water-jet guided laser,” Solid State Technol.44, 25–28 (2001).

Water Res.

R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009).
[CrossRef] [PubMed]

Other

J. L. Shennan, “Hydrocarbons as substrates in industrial fermentation,” in Petroleum Microbiology R.M. Atlas, ed. (Macmillan Publishing Company, 1984).

P. C. H. Li, Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery (Taylor and Francis/CRC Press 2006), Chap. 7.

S. Rajendran, M. A. Jog, and R. M. Manglik, “Experimental investigation of liquid jet breakup at low Weber number” in ILASS Americas,24th Annual Conference on Liquid Atomization and Spray Systems, (San Antonio, TX, 2012), pp. 1–6.

J. Inczedy, T. Lengyel, and A. M. Ure, Compendium of analytical nomenclature. The orange book, 3rd edn., (Blackwell, Oxford 1998).

U.S. Environmental Protection Agency, 2012Edition of the Drinking Water Standards and Health Advisories, EPA 822-S-12–001, http://water.epa.gov/action/advisories/drinking/upload/dwstandards2012.pdf .

R. Meidinger, R. W. St. Germain, V. Dohotariu, and G. D. Gillispie, Field Screening Methods for Hazardous Wastes and Toxic Chemicals (Air & Waste Management Association, 1993), Chap. Fluorescence of Aromatic Hydrocarbons in Aqueous Solutions.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the water jet waveguide sensor.

Fig. 2
Fig. 2

Detail of the liquid jet sensor with liquid jet formed (a) and without (b).

Fig. 3
Fig. 3

Schematic of the experimental setup. The laser source at 266 nm excites the liquid jet; a reservoir and a micro-pump are used to realize a recirculation system. The fluorescence light is collected by means of an optical fiber delivering the signal to a spectrometer which is analyzed using a personal computer.

Fig. 4
Fig. 4

Bi-distilled water spectrum used as blank measurement. The same measurement performed in a quartz cuvette is reported for comparison.

Fig. 5
Fig. 5

Fluorescence spectra of toluene in water at different concentration. Fluorescence spectrum of water is reported for comparison.

Fig. 6
Fig. 6

Calibration curve of the sensor for toluene water solution ranging from 0.032 to 25.19 ppm. As in the following plots the horizontal line is drawn considering three times the value of the standard deviation calculated on blank measurements. The LOD is 0.72 ppm.

Fig. 7
Fig. 7

Calibration curves of the devices for benzene water solutions ranging from 0.49 to 34.64 ppm. The LOD is 1.94 ppm.

Fig. 8
Fig. 8

Calibration curves of the sensor for o-Xylene water solutions ranging from 0.0012 to 0.69 ppm. The LOD found for this molecule is 0.1 ppm.

Fig. 9
Fig. 9

Fluorescence spectra of naphthalene in water at different concentration. Fluorescence spectrum of water is reported for comparison.

Fig. 10
Fig. 10

Calibration curve of the sensor for naphthalene water solution ranging from 2.36∙10-4 to 0.13 ppm. The LOD is 2.2 ppb.

Fig. 11
Fig. 11

Calibration curve for Bacillus subtilis solution. The LOD is 2.45∙105 bacteria/ml.

Tables (1)

Tables Icon

Table 1 Summary of the LODs

Metrics