Abstract

We report on experimental results of supercontinuum generation in bulk diamond. The spectrum of supercontinuum generated with 800 nm pump extends up to 600 nm towards short wavelengths. We present the numerical model explaining the phenomenon, in which the role of different nonlinear effects including stimulated Raman scattering is discussed. Unlike in other materials, in diamond the feature of supercontinuum due to stimulated Raman response is apparently visible.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009).
    [CrossRef]
  2. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
    [CrossRef] [PubMed]
  3. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
    [CrossRef]
  4. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett.84, 3582–3585 (2000).
    [CrossRef] [PubMed]
  5. J. R. Gulley and W. M. Dennis, “Ultrashort-pulse propagation through free-carrier plasmas,” Phys. Rev. A81, 033818 (2010).
    [CrossRef]
  6. N. Y. Vislobokov and A. P. Sukhorukov, “Supercontinuum generation by ultra-high power femtosecond laser pulses in dielectrics,” Phys. Wave Phenom.17, 11–14 (2009).
    [CrossRef]
  7. A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005).
    [CrossRef]
  8. P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
    [CrossRef]
  9. R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276 (1973).
    [CrossRef]
  10. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express19, 913–22 (2011).
    [CrossRef] [PubMed]
  11. M. Zhi, X. Wang, and A. V. Sokolov, “Broadband coherent light generation in diamond driven by femtosecond pulses,” Opt. Express16, 12139–47 (2008).
    [CrossRef] [PubMed]
  12. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
    [CrossRef]
  13. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999).
    [CrossRef]
  14. A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
    [CrossRef]
  15. G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials With Applications (Academic Press, 1998).
  16. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical suseptibility tensor in centrosymmetric media,” Phys. Rev. B10, 4447–4463 (1974).
    [CrossRef]
  17. N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
    [CrossRef]
  18. C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
    [CrossRef] [PubMed]
  19. B. Ratajska-Gadomska, “Influence of the interaction between dipoles, optically induced in a crystal lattice, on the nonlinear refractive index of crystals,” Phys. Rev. B26, 1942–1958 (1982).
    [CrossRef]
  20. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air component,” Opt. Express17, 13429–13434 (2009).
    [CrossRef] [PubMed]
  21. A. M. Zheltikov, “Understanding the nonlinear phase and frequency shift of an ultrashort light pulse induced by an inertial third-order optical nonlinearity,” Phys. Rev. A79, 023823 (2009).
    [CrossRef]
  22. K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
    [CrossRef]
  23. B. Sapoval, C. Hermann, and C. Hermann, Physics of Semiconductors (Springer, 2003).
  24. P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
    [CrossRef]
  25. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exptl. Theoret. Phys.47, 1945–1957 (1964).
  26. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
    [CrossRef]
  27. V. E. Gruzdev, “Analysis of the transparent-crystal ionization model developed by L V Keldysh,” J. Opt. Technol.71, 504–508 (2004).
    [CrossRef]
  28. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23, 382–384 (1998).
    [CrossRef]
  29. M. R. Junnarkar, “Short pulse propagation in tight focusing conditions,” Opt. Commun.195, 273–292 (2001).
    [CrossRef]
  30. H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
    [CrossRef]
  31. M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
    [CrossRef]
  32. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
    [CrossRef]
  33. A. E. Siegman, “Quasi fast Hankel transform.” Opt. Lett.1, 13–15 (1977).
    [CrossRef] [PubMed]

2012 (2)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

2011 (4)

J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express19, 913–22 (2011).
[CrossRef] [PubMed]

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
[CrossRef] [PubMed]

P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
[CrossRef]

H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
[CrossRef]

2010 (2)

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

J. R. Gulley and W. M. Dennis, “Ultrashort-pulse propagation through free-carrier plasmas,” Phys. Rev. A81, 033818 (2010).
[CrossRef]

2009 (4)

N. Y. Vislobokov and A. P. Sukhorukov, “Supercontinuum generation by ultra-high power femtosecond laser pulses in dielectrics,” Phys. Wave Phenom.17, 11–14 (2009).
[CrossRef]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air component,” Opt. Express17, 13429–13434 (2009).
[CrossRef] [PubMed]

A. M. Zheltikov, “Understanding the nonlinear phase and frequency shift of an ultrashort light pulse induced by an inertial third-order optical nonlinearity,” Phys. Rev. A79, 023823 (2009).
[CrossRef]

2008 (1)

2007 (1)

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

2005 (1)

A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005).
[CrossRef]

2004 (1)

2003 (1)

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
[CrossRef]

2002 (1)

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

2001 (2)

M. R. Junnarkar, “Short pulse propagation in tight focusing conditions,” Opt. Commun.195, 273–292 (2001).
[CrossRef]

N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
[CrossRef]

2000 (1)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett.84, 3582–3585 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23, 382–384 (1998).
[CrossRef]

1997 (1)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

1982 (1)

B. Ratajska-Gadomska, “Influence of the interaction between dipoles, optically induced in a crystal lattice, on the nonlinear refractive index of crystals,” Phys. Rev. B26, 1942–1958 (1982).
[CrossRef]

1977 (1)

1974 (1)

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical suseptibility tensor in centrosymmetric media,” Phys. Rev. B10, 4447–4463 (1974).
[CrossRef]

1973 (1)

R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276 (1973).
[CrossRef]

1964 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exptl. Theoret. Phys.47, 1945–1957 (1964).

Ahuja, R.

H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
[CrossRef]

Akozbek, N.

N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
[CrossRef]

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Band, Y.

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

Baudisch, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Biegert, J.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Bloembergen, N.

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical suseptibility tensor in centrosymmetric media,” Phys. Rev. B10, 4447–4463 (1974).
[CrossRef]

Bohn, M. J.

Bowden, C. M.

N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Brasseur, J. K.

Brée, C.

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
[CrossRef] [PubMed]

Brodeur, A.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999).
[CrossRef]

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

Bryant, G. W.

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Chin, S.

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

Chin, S. L.

N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
[CrossRef]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999).
[CrossRef]

Chowdhury, I.

A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005).
[CrossRef]

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Demircan, A.

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
[CrossRef] [PubMed]

Dennis, W. M.

J. R. Gulley and W. M. Dennis, “Ultrashort-pulse propagation through free-carrier plasmas,” Phys. Rev. A81, 033818 (2010).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Faucher, O.

Feve, J.-P. M.

Fibich, G.

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett.84, 3582–3585 (2000).
[CrossRef] [PubMed]

Ghosh, G.

G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials With Applications (Academic Press, 1998).

Grigoriev, A.

H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
[CrossRef]

Gruzdev, V. E.

Gudelis, V.

P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
[CrossRef]

Gulley, J. R.

J. R. Gulley and W. M. Dennis, “Ultrashort-pulse propagation through free-carrier plasmas,” Phys. Rev. A81, 033818 (2010).
[CrossRef]

Hemley, R. J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Hermann, C.

B. Sapoval, C. Hermann, and C. Hermann, Physics of Semiconductors (Springer, 2003).

B. Sapoval, C. Hermann, and C. Hermann, Physics of Semiconductors (Springer, 2003).

Hertz, E.

Holzlöhner, R.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
[CrossRef]

Isberg, J.

H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
[CrossRef]

Ivakin, E.

P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
[CrossRef]

Jaksch, D.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Jarašiunas, K.

P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
[CrossRef]

Junnarkar, M. R.

M. R. Junnarkar, “Short pulse propagation in tight focusing conditions,” Opt. Commun.195, 273–292 (2001).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exptl. Theoret. Phys.47, 1945–1957 (1964).

Kolesik, M.

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Kruk, P.

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

Lai, J.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Lavorel, B.

Lee, K.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Levenson, M. D.

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical suseptibility tensor in centrosymmetric media,” Phys. Rev. B10, 4447–4463 (1974).
[CrossRef]

Löfås, H.

H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
[CrossRef]

Lorenz, V.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Loriot, V.

Mao, H. K.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Menyuk, C. R.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
[CrossRef]

Mlejnek, M.

Moloney, J. V.

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23, 382–384 (1998).
[CrossRef]

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Newell, a. C.

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

Newell, K.

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

Nunn, J.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Prawer, S.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Ralchenko, V. G.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Ratajska-Gadomska, B.

B. Ratajska-Gadomska, “Influence of the interaction between dipoles, optically induced in a crystal lattice, on the nonlinear refractive index of crystals,” Phys. Rev. B26, 1942–1958 (1982).
[CrossRef]

Reim, K.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Rhee, H.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Sapoval, B.

B. Sapoval, C. Hermann, and C. Hermann, Physics of Semiconductors (Springer, 2003).

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Šcajev, P.

P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
[CrossRef]

Scalora, M.

N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
[CrossRef]

Shortoff, K. E.

Siegman, A. E.

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Sinkin, O. V.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
[CrossRef]

Sokolov, A. V.

Spielmann, C.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

Spizzirri, P.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Steinmeyer, G.

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
[CrossRef] [PubMed]

Stolen, R. H.

R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276 (1973).
[CrossRef]

Sukhorukov, A. P.

N. Y. Vislobokov and A. P. Sukhorukov, “Supercontinuum generation by ultra-high power femtosecond laser pulses in dielectrics,” Phys. Wave Phenom.17, 11–14 (2009).
[CrossRef]

Sussman, B. J.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Thai, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Trippenbach, M.

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

Vislobokov, N. Y.

N. Y. Vislobokov and A. P. Sukhorukov, “Supercontinuum generation by ultra-high power femtosecond laser pulses in dielectrics,” Phys. Wave Phenom.17, 11–14 (2009).
[CrossRef]

Walmsley, I.

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

Wang, X.

Wasilewski, W.

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

Whalen, P.

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

Wright, E. M.

Wu, A.

A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005).
[CrossRef]

Xu, X.

A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005).
[CrossRef]

Yan, C. S.

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, “Understanding the nonlinear phase and frequency shift of an ultrashort light pulse induced by an inertial third-order optical nonlinearity,” Phys. Rev. A79, 023823 (2009).
[CrossRef]

Zhi, M.

Zweck, J.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
[CrossRef]

AIP Advances (1)

H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011).
[CrossRef]

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276 (1973).
[CrossRef]

Diam. Relat. Mater. (1)

K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010).
[CrossRef]

J. Exptl. Theoret. Phys. (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exptl. Theoret. Phys.47, 1945–1957 (1964).

J. of Lightwave Technol. (1)

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Laser Phys. Lett. (1)

A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007).
[CrossRef]

Nature communications (1)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012).
[CrossRef] [PubMed]

Opt. Commun. (3)

N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001).
[CrossRef]

M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002).
[CrossRef]

M. R. Junnarkar, “Short pulse propagation in tight focusing conditions,” Opt. Commun.195, 273–292 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (3)

A. M. Zheltikov, “Understanding the nonlinear phase and frequency shift of an ultrashort light pulse induced by an inertial third-order optical nonlinearity,” Phys. Rev. A79, 023823 (2009).
[CrossRef]

J. R. Gulley and W. M. Dennis, “Ultrashort-pulse propagation through free-carrier plasmas,” Phys. Rev. A81, 033818 (2010).
[CrossRef]

P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012).
[CrossRef]

Phys. Rev. B (3)

A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005).
[CrossRef]

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical suseptibility tensor in centrosymmetric media,” Phys. Rev. B10, 4447–4463 (1974).
[CrossRef]

B. Ratajska-Gadomska, “Influence of the interaction between dipoles, optically induced in a crystal lattice, on the nonlinear refractive index of crystals,” Phys. Rev. B26, 1942–1958 (1982).
[CrossRef]

Phys. Rev. Lett. (5)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998).
[CrossRef]

C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
[CrossRef] [PubMed]

A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997).
[CrossRef]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett.84, 3582–3585 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi (a) (1)

P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011).
[CrossRef]

Phys. Wave Phenom. (1)

N. Y. Vislobokov and A. P. Sukhorukov, “Supercontinuum generation by ultra-high power femtosecond laser pulses in dielectrics,” Phys. Wave Phenom.17, 11–14 (2009).
[CrossRef]

Other (2)

G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials With Applications (Academic Press, 1998).

B. Sapoval, C. Hermann, and C. Hermann, Physics of Semiconductors (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectra of supercontinua generated in the experiment for different input energies in whole measurement range in logarithmic scale (a). The spectra of supercontinua for input energies over 17 μJ where the peak is observed in linear scale, the inset shows in detail the spectra in vicinity of expected anti-Stokes Raman line (b).

Fig. 2
Fig. 2

Spectra of generated supercontinua as a function of input energy measured in experiment (a) and reconstructed from the simulation (b).

Fig. 3
Fig. 3

The dispersion curve of diamond as calculated from Sellmair formula.

Fig. 4
Fig. 4

Experimentally measured spectrum of supercontinuum (solid black line), simulation with all contributions included (red dashed line), without stimulated Raman scattering term (green dashed and dotted line), without n4 nonlinearity (blue dotted line) in linear (a) and logarithmic (b) scale. The inset presents enlarged vicinity of stimulated Raman scattering peak.

Fig. 5
Fig. 5

Results of the simulation for different values of chirp parameter C. The fringes on the short wavelength site of the spectrum become more pronounced for negative values of chirp (see the inset). For clarity the spectra are vertically shifted from each other.

Tables (1)

Tables Icon

Table 1 The values of parameters used in simulation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d A d z = ( i D ^ + i 2 k 0 T ^ 1 2 ) A + i ω 0 T ^ 2 n 0 ε 0 c P n l 1 2 n 0 ε 0 c J f c ,
D ^ = I F T { m = 2 n k m m ! ω m } ,
D ^ = I F T { k ( k 0 + k 1 ω ) } ,
ω 0 2 n 0 ε 0 c P n l = γ e | A | 2 A + θ | A | 4 A + γ R A t R ( t τ ) | A ( τ ) | 2 d τ .
R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 e t τ 2 sin ( t τ 1 ) Θ ( t ) ,
1 2 n 0 ε 0 c J f c = W P I ( | A | ) E g 2 I A + σ 2 ( 1 + i ω 0 τ c ) G ^ 1 ρ A ,
G ^ 1 = m = 0 ( i g ω 0 t ) m ( 1 i g ω 0 t )
ρ t = W P I ( | A | ) ,
A ( r , t ) = A 0 e r 2 w 0 2 ( 1 + i C ) t 2 2 σ 2 ( 1 + C 2 ) ,

Metrics