Abstract

We report on the experimental results of 300 nm features generated on fused silica using a near-infrared (IR) femtosecond laser pulse initiated by an ultraviolet (UV) pulse. With both pulses at a short (~60 fs) delay, the damage threshold of the UV pulse is only 10% of its normal value. Considerable reduction of UV damage threshold is observed when two pulses are at ± 1.3 ps delay. The damage feature size of the combined pulses is similar to that of a single UV pulse. A modified rate equation model with the consideration of defect states is used to help explain these results. This concept can be applied to shorter wavelengths, e.g. XUV and X-ray, with the required fluence below their normal threshold.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
    [CrossRef]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  3. M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
    [CrossRef]
  4. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
    [CrossRef]
  5. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
    [CrossRef] [PubMed]
  6. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
    [CrossRef] [PubMed]
  7. S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
    [CrossRef]
  8. J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
    [CrossRef]
  9. D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
    [CrossRef]
  10. J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
    [CrossRef]
  11. J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
    [CrossRef]
  12. X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
    [CrossRef]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  14. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
    [CrossRef]
  15. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
    [CrossRef]
  16. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
    [CrossRef]
  17. G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B41(2), 025601 (2008).
    [CrossRef]
  18. J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
    [CrossRef]
  19. Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
    [CrossRef]

2013 (5)

Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013).
[CrossRef] [PubMed]

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
[CrossRef]

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

2012 (1)

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

2011 (1)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

2010 (2)

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

2008 (3)

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B41(2), 025601 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
[CrossRef]

2007 (1)

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

2004 (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

1999 (1)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
[CrossRef]

1997 (1)

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Ali, M.

M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
[CrossRef]

Barillot, T.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

Békési, J.

J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Bennion, I.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Bian, Q.

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

Bolger, P.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Bonse, J.

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

Caballero-Lucas, F.

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Chang, Z.

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Chen, D.

Cheng, Y.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Chini, M.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Corkum, P. B.

J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
[CrossRef]

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

Cunningham, E.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Daguzan, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Davis, J.

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B41(2), 025601 (2008).
[CrossRef]

D'Oliveira, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Dubov, M.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Fernández-Pradas, J. M.

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

Florian, C.

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Gertsvolf, M.

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

Gibson, G. N.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
[CrossRef]

Grojo, D.

J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
[CrossRef]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

Guizard, S.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Herbstman, J. F.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Hohm, S.

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

Hunt, A. J.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Joglekar, A.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Klein-Wiele, J. H.

J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Kruger, J.

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

Kudryashov, S. I.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

Lei, S.

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

Li, J.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
[CrossRef]

Liao, Y.

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Martin, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Meynadier, P.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Mezentsev, V.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Midorikawa, K.

Molian, P. A.

M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Morenza, J. L.

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

Mourou, G.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Osellame, R.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Peng, J.

J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
[CrossRef]

Perdrix, M.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Petite, G.

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Petrov, G. M.

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B41(2), 025601 (2008).
[CrossRef]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Qiao, L.

Rayner, D. M.

J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
[CrossRef]

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

Rosenfeld, A.

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Schmitz, H.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Serra, P.

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

Shakoor, M.

M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
[CrossRef]

Shen, Y.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Simon, P.

J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Sugioka, K.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Wagner, T.

M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
[CrossRef]

Wang, X.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Wang, Y.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Wu, Y.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Yu, X.

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

Zang, H.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Zayats, A. V.

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

Zhao, B.

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

Zhao, K.

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Appl. Phys. Lett. (4)

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007).
[CrossRef]

X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013).
[CrossRef]

J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013).
[CrossRef]

Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996).
[CrossRef]

Appl. Surf. Sci. (1)

J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013).
[CrossRef]

Cent. Eur. J. Phys. (1)

D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010).
[CrossRef]

J. Laser Appl. (2)

J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012).
[CrossRef]

M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008).
[CrossRef]

J. Phys. B (1)

G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B41(2), 025601 (2008).
[CrossRef]

Laser Photon. Rev. (1)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010).
[CrossRef]

P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experiment setup. ND: neutral density. SHG: second harmonic generation. BBO: barium borate. HWP: half-wave plate. THG: third harmonic generation. Focal length: L1 = −25 mm, L2 = 100 mm, L3 = 200 mm. M1-M3: 800 nm dielectric mirrors. DM1-DM3: dichroic mirrors. RO: reflecting objective.

Fig. 2
Fig. 2

(a) SEM image of a damage spot caused by single UV beam. (b) Cross section along the dashed line in (a). The pulse energy is 64 nJ.

Fig. 3
Fig. 3

Relationship between threshold energy and delay of UV and IR pulses. Insets: SEM images of each point indicated by a, b, c and d. Scale bars are 1 μm. Black dashed line indicates UV single beam threshold. The solid lines are guides to the eye.

Fig. 4
Fig. 4

Comparison of numerical calculation of damage threshold with and without defect states at different delays. Dots are experimental results from Fig. 3 (37 μJ). α2 = 20 cm2/J, α6 = 4 cm2/J, σ1 = 2 × 10−3 (W/m2)s−1, σ2 = 1.1 × 10−21 (W/m2)2s−1, τe = 150 fs, τd = 1 ps, pulse duration (FWHM): 70 fs for UV and 60 fs for IR.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n e dt = W MPI (I)+αI n e + σ j I j n d n e τ e d n d dt = n e τ e σ j I j n d n d τ d

Metrics