Abstract

In this paper, three different unit cells are designed on the basis split-ring-cross resonators, and each unit cell has an absorption rate greater than 90% at incident angles of 0°, 30°, and 45°, respectively. They are non-periodically placed in three different zones on the curved surface. Therefore, the proposed conformal metamaterial absorber can achieve a high absorption rate. The performance of the proposed absorber is compared with that of a metallic curved surface and a conformal metamaterial absorber with the same unit cells.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Bahret, “The beginnings of stealth technology,” IEEE Trans. Aerospace Electron, Sys. 29(4), 1377–1385 (1993).
    [CrossRef]
  2. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propagation. 36(10), 1443–1454 (1988).
    [CrossRef]
  3. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  4. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
    [CrossRef]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  6. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
    [CrossRef]
  7. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17(10), 8467–8475 (2009).
    [CrossRef] [PubMed]
  8. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [CrossRef]
  9. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [CrossRef] [PubMed]
  10. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
    [CrossRef] [PubMed]
  11. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [CrossRef] [PubMed]
  12. J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–9 (2011).
    [CrossRef]
  13. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19(22), 21155–21162 (2011).
    [CrossRef] [PubMed]
  14. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
    [CrossRef]
  15. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [CrossRef]
  16. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, 1989).

2012 (1)

2011 (6)

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[CrossRef]

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
[CrossRef] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[CrossRef] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19(22), 21155–21162 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–9 (2011).
[CrossRef]

2010 (2)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

2009 (2)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17(10), 8467–8475 (2009).
[CrossRef] [PubMed]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

1993 (1)

W. F. Bahret, “The beginnings of stealth technology,” IEEE Trans. Aerospace Electron, Sys. 29(4), 1377–1385 (1993).
[CrossRef]

1988 (1)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propagation. 36(10), 1443–1454 (1988).
[CrossRef]

Argyropoulos, C.

Averitt, R.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Averitt, R. D.

Bahret, W. F.

W. F. Bahret, “The beginnings of stealth technology,” IEEE Trans. Aerospace Electron, Sys. 29(4), 1377–1385 (1993).
[CrossRef]

Bingham, C.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Chen, Y.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Cheng, Y.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[CrossRef]

Cheng, Z.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[CrossRef]

Chern, R. L.

Cui, T. J.

Dong, G.

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Fante, R. L.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propagation. 36(10), 1443–1454 (1988).
[CrossRef]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Hao, Y.

Iwaszczuk, K.

Jepsen, P. U.

Jiang, W. X.

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Kallos, E.

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, J.

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–9 (2011).
[CrossRef]

Li, H.

Lim, S.

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–9 (2011).
[CrossRef]

Lin, C. H.

Lin, H. Y.

Liu, L.

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Ma, H. F.

McCormack, M. T.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propagation. 36(10), 1443–1454 (1988).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Padilla, W.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Qiu, M.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Shen, X.

Shrekenhamer, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Strikwerda, A.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Strikwerda, A. C.

Sun, J.

Tao, H.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Tyler, T.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wu, N.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[CrossRef]

Yan, M.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

Yang, H.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[CrossRef]

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[CrossRef] [PubMed]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Zhao, J.

Zhao, Y.

Zhou, J.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[CrossRef]

Electron. Lett. (1)

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–9 (2011).
[CrossRef]

IEEE Trans. Aerospace Electron, Sys. (1)

W. F. Bahret, “The beginnings of stealth technology,” IEEE Trans. Aerospace Electron, Sys. 29(4), 1377–1385 (1993).
[CrossRef]

IEEE Trans. Antennas Propagation. (1)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propagation. 36(10), 1443–1454 (1988).
[CrossRef]

J. Appl. Phys. (1)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” J. Appl. Phys. 109(7), 074510 (2011).
[CrossRef]

J. Phys. D (1)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (2)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Other (1)

D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Illustrated concept and (b) unit cells of the proposed absorber (unit: mm).

Fig. 2
Fig. 2

Simulated reflection coefficients of unit cells A, B, and C.

Fig. 3
Fig. 3

Image of the fabricated absorber prototype.

Fig. 4
Fig. 4

Simulated bistatic RCSs of the PEC, conventional metamaterial absorber using uniform unit cells, and proposed metamaterial absorbers using three different nonuniform unit cells.

Fig. 5
Fig. 5

Illustartion of the bistatic RCS measurement setup.

Fig. 6
Fig. 6

Measured and simulated reflection coefficients of the proposed conformal metamaterial absorber and the metal plate.

Fig. 7
Fig. 7

Measured reflection coefficients of the proposed conformal metamaterial absorber for TE and TM mode.

Fig. 8
Fig. 8

Measured reflection coefficients of the proposed conformal metamaterial absorber at different angles of incidence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ norm = Γ 1 ( 1 Γ 1 2 ) e j2 k M d ( 1 Γ 1 ) e j2 k M d Γ 1 = η M η o η M + η o ,
Γ obliq η M cos θ i η o cos θ t η M cos θ i + η o cos θ t ,
X crit = μ M 2 co s 2 θ i μ M ε M + sin 2 θ i =0

Metrics