Abstract

The angled-grating broad-area laser is a promising candidate for high power, high brightness diode laser source. The key point in the design is the angled gratings which can simultaneously support the unique snake-like zigzag lasing mode and eliminate the direct Fabry-Perot (FP) feedback. Unlike a conventional laser waveguide mode, the phase front of the zigzag mode periodically changes along the propagation direction. By use of the mirror symmetry of the zigzag mode, we propose and demonstrate the folded cavity angled-grating broad-area lasers. One benefit of this design is to reduce the required wafer space compared to a regular angled-grating broad-area laser, especially in a long cavity laser for high power operation. Experimental results show that the folded cavity laser exhibits good beam quality in far field with a slightly larger threshold and smaller slope efficiency due to the additional interface loss.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.
  2. V. V. DWong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2 W cw single-mode diffraction-limited output at 10.6μm,” in “In Laser and Electro-Optics, 1998. CLEO ’98., Summaries of papers presented at the Conference on,” (1998), 34–35.
  3. K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
    [CrossRef]
  4. R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
    [CrossRef]
  5. R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
    [CrossRef]
  6. R. Guther, “Beam propagation in an active planar waveguide with an angled bragg grating (α laser),” J. Mod. Optic.45, 1537–1546 (1998).
    [CrossRef]
  7. A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
    [CrossRef]
  8. L. Zhu, A. Scherer, and A. Yariv, “Modal Gain Analysis of Transverse Bragg Resonance Waveguide Lasers With and Without Transverse Defects,” IEEE J. Quantum Electron.43, 934–940 (2007).
    [CrossRef]
  9. D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave. Technol.7, 336–339 (1989).
    [CrossRef]
  10. Y. Zhao and L. Zhu, “On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers,” Opt. Express20, 6375–6384 (2012).
    [CrossRef] [PubMed]
  11. K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
    [CrossRef]
  12. Y. Zhao and L. Zhu, “Improved beam quality of coherently combined angled-grating broad-area lasers,” Photonics Journal, IEEE5, 1500307–1500307 (2013).
    [CrossRef]
  13. S. J. Pearton, “Ion implantation for isolation of III–V semiconductors,” Mater. Sci. Rep.4, 313–363 (1990).
    [CrossRef]

2013 (1)

Y. Zhao and L. Zhu, “Improved beam quality of coherently combined angled-grating broad-area lasers,” Photonics Journal, IEEE5, 1500307–1500307 (2013).
[CrossRef]

2012 (1)

2007 (1)

L. Zhu, A. Scherer, and A. Yariv, “Modal Gain Analysis of Transverse Bragg Resonance Waveguide Lasers With and Without Transverse Defects,” IEEE J. Quantum Electron.43, 934–940 (2007).
[CrossRef]

2003 (2)

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

2000 (1)

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

1999 (1)

A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
[CrossRef]

1998 (2)

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

R. Guther, “Beam propagation in an active planar waveguide with an angled bragg grating (α laser),” J. Mod. Optic.45, 1537–1546 (1998).
[CrossRef]

1990 (1)

S. J. Pearton, “Ion implantation for isolation of III–V semiconductors,” Mater. Sci. Rep.4, 313–363 (1990).
[CrossRef]

1989 (1)

D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave. Technol.7, 336–339 (1989).
[CrossRef]

Bartolo, R. E.

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Bewley, W. W.

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Bogatov, A.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

Bossert, D.

A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
[CrossRef]

Bugge, F.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

Demars, S.

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

Demars, S. D.

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

V. V. DWong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2 W cw single-mode diffraction-limited output at 10.6μm,” in “In Laser and Electro-Optics, 1998. CLEO ’98., Summaries of papers presented at the Conference on,” (1998), 34–35.

Drakin, A. E.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

DWong, V. V.

V. V. DWong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2 W cw single-mode diffraction-limited output at 10.6μm,” in “In Laser and Electro-Optics, 1998. CLEO ’98., Summaries of papers presented at the Conference on,” (1998), 34–35.

Dzurko, K.

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

Dzurko, K. M.

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

Erbert, G.

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

Felix, C. L.

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Fricke, J.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

Guther, R.

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

R. Guther, “Beam propagation in an active planar waveguide with an angled bragg grating (α laser),” J. Mod. Optic.45, 1537–1546 (1998).
[CrossRef]

Güther, R.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

Hardy, A.

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

Hardy, A. A.

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

Lang, R. J.

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

V. V. DWong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2 W cw single-mode diffraction-limited output at 10.6μm,” in “In Laser and Electro-Optics, 1998. CLEO ’98., Summaries of papers presented at the Conference on,” (1998), 34–35.

Marciante, J.

A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
[CrossRef]

Marcuse, D.

D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave. Technol.7, 336–339 (1989).
[CrossRef]

Meyer, J. R.

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Paschke, K.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

Pearton, S. J.

S. J. Pearton, “Ion implantation for isolation of III–V semiconductors,” Mater. Sci. Rep.4, 313–363 (1990).
[CrossRef]

Sarangan, A.

A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
[CrossRef]

Scherer, A.

L. Zhu, A. Scherer, and A. Yariv, “Modal Gain Analysis of Transverse Bragg Resonance Waveguide Lasers With and Without Transverse Defects,” IEEE J. Quantum Electron.43, 934–940 (2007).
[CrossRef]

Schoenfelder, A.

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

V. V. DWong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2 W cw single-mode diffraction-limited output at 10.6μm,” in “In Laser and Electro-Optics, 1998. CLEO ’98., Summaries of papers presented at the Conference on,” (1998), 34–35.

Scifres, D. R.

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

Stratonnikov, A. A.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

Trankle, G.

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

Tränkle, G.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

Vurgaftman, I.

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Welch, D.

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

Welch, D. F.

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

Wenzel, H.

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

Wright, M.

A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
[CrossRef]

Yang, M. J.

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Yariv, A.

L. Zhu, A. Scherer, and A. Yariv, “Modal Gain Analysis of Transverse Bragg Resonance Waveguide Lasers With and Without Transverse Defects,” IEEE J. Quantum Electron.43, 934–940 (2007).
[CrossRef]

Zhao, Y.

Y. Zhao and L. Zhu, “Improved beam quality of coherently combined angled-grating broad-area lasers,” Photonics Journal, IEEE5, 1500307–1500307 (2013).
[CrossRef]

Y. Zhao and L. Zhu, “On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers,” Opt. Express20, 6375–6384 (2012).
[CrossRef] [PubMed]

Zhu, L.

Y. Zhao and L. Zhu, “Improved beam quality of coherently combined angled-grating broad-area lasers,” Photonics Journal, IEEE5, 1500307–1500307 (2013).
[CrossRef]

Y. Zhao and L. Zhu, “On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers,” Opt. Express20, 6375–6384 (2012).
[CrossRef] [PubMed]

L. Zhu, A. Scherer, and A. Yariv, “Modal Gain Analysis of Transverse Bragg Resonance Waveguide Lasers With and Without Transverse Defects,” IEEE J. Quantum Electron.43, 934–940 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

R. E. Bartolo, W. W. Bewley, I. Vurgaftman, C. L. Felix, J. R. Meyer, and M. J. Yang, “Mid-infrared angled-grating distributed feedback laser,” Appl. Phys. Lett.76, 3164–3166 (2000).
[CrossRef]

Electron. Lett. (1)

K. Paschke, R. Guther, J. Fricke, F. Bugge, G. Erbert, and G. Trankle, “High power and high spectral brightness in 1060 nm alpha-dfb lasers with long resonators,” Electron. Lett.39, 369–370 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. J. Lang, K. Dzurko, A. A. Hardy, S. Demars, A. Schoenfelder, and D. F. Welch, “Theory of Grating-Confined Broad-Area Lasers,” IEEE J. Quantum Electron.34, 2196–2210 (1998).
[CrossRef]

A. Sarangan, M. Wright, J. Marciante, and D. Bossert, “Spectral properties of angled-grating high-power semiconductor lasers,” IEEE J. Quantum Electron.35, 1220–1230 (1999).
[CrossRef]

L. Zhu, A. Scherer, and A. Yariv, “Modal Gain Analysis of Transverse Bragg Resonance Waveguide Lasers With and Without Transverse Defects,” IEEE J. Quantum Electron.43, 934–940 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

K. Paschke, A. Bogatov, F. Bugge, A. E. Drakin, J. Fricke, R. Güther, A. A. Stratonnikov, H. Wenzel, G. Erbert, and G. Tränkle, “Properties of ion-implanted high-power angled-grating distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron9, 1172–1178 (2003).
[CrossRef]

J. Lightwave. Technol. (1)

D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave. Technol.7, 336–339 (1989).
[CrossRef]

J. Mod. Optic. (1)

R. Guther, “Beam propagation in an active planar waveguide with an angled bragg grating (α laser),” J. Mod. Optic.45, 1537–1546 (1998).
[CrossRef]

Mater. Sci. Rep. (1)

S. J. Pearton, “Ion implantation for isolation of III–V semiconductors,” Mater. Sci. Rep.4, 313–363 (1990).
[CrossRef]

Opt. Express (1)

Photonics Journal, IEEE (1)

Y. Zhao and L. Zhu, “Improved beam quality of coherently combined angled-grating broad-area lasers,” Photonics Journal, IEEE5, 1500307–1500307 (2013).
[CrossRef]

Other (2)

S. D. Demars, K. M. Dzurko, R. J. Lang, D. Welch, D. R. Scifres, and A. Hardy, “Angled-grating distributed feedback laser with 1 W cw single-mode diffraction-limited output at 980nm,” in “Lasers and Electro-Optics, 1996. CLEO ’96., Summaries of papers presented at the Conference on,” (1996), 77–78.

V. V. DWong, S. D. DeMars, A. Schoenfelder, and R. J. Lang, “Angled-grating distributed-feedback laser with 1.2 W cw single-mode diffraction-limited output at 10.6μm,” in “In Laser and Electro-Optics, 1998. CLEO ’98., Summaries of papers presented at the Conference on,” (1998), 34–35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic plot of a folded angled-grating broad-area laser.

Fig. 2
Fig. 2

(a) and (b) Simulation result and mode profile of an unfolded angled-grating broad-area laser; (c) Mode coupling in a folded cavity angled-grating broad-area laser. The inset is the zoom-in view at the interface; (d) Simulation result of the preferred mode when L = 4NLc; (e) Simulation result of high diffraction loss when L = (4N + 2)Lc.

Fig. 3
Fig. 3

(a) Top view of the packaged folded cavity angled-grating broad-area laser. The inset is the zoom-in view at the interface; (b) Cross-section of the folded cavity laser. The inset is the zoom in view of one etched trench.

Fig. 4
Fig. 4

(a) Near field profiles of the folded cavity (blue solid line) and unfolded cavity (red dashed line). (b) Far field profiles and camera images of the folded cavity (blued solid line) and unfolded cavity (red dashed line). The calculated far field is shown in green dash-dotted line. (c) Light-current curves of the folded cavity (blue solid line) and unfolded cavity (red dashed line). (d) Optical spectrum of the folded cavity (blue solid line) and unfolded cavity (red dashed line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = T 0 × η 0 2 c 0 μ 0 P 0 | E R 1 E R 2 | e j 2 k sin ( θ B ) x d x

Metrics