Abstract

Temperature-compensated 3D fiber shape sensing is demonstrated with femtosecond laser direct-written optical and Bragg grating waveguides that were distributed axially and radially inside a single coreless optical fiber. Efficient light coupling between the laser-written optical circuit elements and a standard single-mode fiber (SMF) was obtained for the first time by 3D laser writing of a 1 × 3 directional coupler to meet with the core waveguide in the fusion-spliced SMF. Simultaneous interrogation of nine Bragg gratings, distributed along three laterally offset waveguides, is presented through a single waveguide port at 1 kHz sampling rate to follow the Bragg wavelength shifts in real-time and thereby infer shape and temperature profile unambiguously along the fiber length. This distributed 3D strain and thermal sensor is freestanding, flexible, compact, lightweight and opens new directions for creating fiber cladding photonic devices for a wide range of applications from shape and thermal sensing to guidance of biomedical catheters and tools in minimally invasive surgery.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
    [CrossRef]
  2. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt.43, 5425–5428 (2004).
    [CrossRef] [PubMed]
  3. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express20, 28557–28562 (2012).
    [CrossRef] [PubMed]
  4. L.-Y. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28, 2681–2687 (2010).
    [CrossRef]
  5. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev.7, 83–108 (2013).
    [CrossRef]
  6. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31, 1794–1796 (2006).
    [CrossRef] [PubMed]
  7. G. Flockhart, W. N. MacPherson, J. S. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett.28, 387–389 (2003).
    [CrossRef] [PubMed]
  8. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
    [CrossRef]
  9. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
    [CrossRef]
  10. R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).
  11. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express20, 2967–2973 (2012).
    [CrossRef] [PubMed]
  12. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express19, 5698–5705 (2011).
    [CrossRef] [PubMed]
  13. R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 53–118.
    [CrossRef]
  14. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
    [CrossRef]
  15. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tuennermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett.36, 2988–2990 (2011).
    [CrossRef] [PubMed]
  16. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
    [CrossRef]
  17. J. R. Grenier, L. A. Fernandes, P. V. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in “CLEO:2011 - Fiber Devices (CMZ),” (Optical Society of America, Baltimore, 2011).
  18. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28, 2491–2493 (2003).
    [CrossRef] [PubMed]
  19. A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tuennermann, “Control of directional evanescent coupling in fs laser written waveguides,” Opt. Express15, 1579–1587 (2007).
    [CrossRef] [PubMed]
  20. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. Stewart Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20, 24103–24114 (2012).
    [CrossRef] [PubMed]
  21. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
    [CrossRef] [PubMed]
  22. H. Zhang, “Bragg Grating Waveguide Devices: Discovery, Optimization, and Application,” Ph.D. thesis, University of Toronto (2007).
  23. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express21, 4493–4502 (2013).
    [CrossRef] [PubMed]
  24. K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol.15, 1263–1287 (1997).
    [CrossRef]
  25. R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 445.
  26. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. of SPIE6273, 2K/1–2K/11 (2006).
  27. N. F. Borrelli and R. A. Miller, “Determination of the individual strain-optic coefficients of glass by an ultrasonic technique.” Appl. Opt.7, 745–750 (1968).
    [CrossRef] [PubMed]
  28. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  29. M. A. Crisfield, “A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements,” Computer Meth. Appl. Mechanics Engineer.81, 131–150 (1990).
    [CrossRef]
  30. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett.19, 2027–2029 (1994).
    [CrossRef] [PubMed]
  31. Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).
  32. M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

2013 (2)

2012 (4)

2011 (2)

2010 (4)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

L.-Y. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28, 2681–2687 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

2008 (1)

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

2007 (3)

2006 (2)

2004 (3)

2003 (2)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol.15, 1263–1287 (1997).
[CrossRef]

1994 (1)

1990 (1)

M. A. Crisfield, “A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements,” Computer Meth. Appl. Mechanics Engineer.81, 131–150 (1990).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
[CrossRef]

1968 (1)

Aitchison, J. S.

J. R. Grenier, L. A. Fernandes, P. V. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in “CLEO:2011 - Fiber Devices (CMZ),” (Optical Society of America, Baltimore, 2011).

Albert, J.

Asano, T.

Bai, Z.

Barton, J. S.

Bennion, I.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt.43, 5425–5428 (2004).
[CrossRef] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

G. Flockhart, W. N. MacPherson, J. S. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett.28, 387–389 (2003).
[CrossRef] [PubMed]

Bhardwaj, V. R.

Birks, T. A.

Black, R. J.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Bland-Hawthorn, J.

Borrelli, N. F.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev.7, 83–108 (2013).
[CrossRef]

Chen, C.

Chen, L. K.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

Chen, X.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt.43, 5425–5428 (2004).
[CrossRef] [PubMed]

Corkum, P. B.

Crisfield, M. A.

M. A. Crisfield, “A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements,” Computer Meth. Appl. Mechanics Engineer.81, 131–150 (1990).
[CrossRef]

Cutkosky, M. R.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Daniel, B.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Dankelman, J.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

Dreisow, F.

Dubov, M.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

Duncan, R. G.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Eaton, S. M.

Elayaperumal, S.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Fernandes, L. A.

Flockhart, G.

Frey, B. J.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. of SPIE6273, 2K/1–2K/11 (2006).

Froggatt, M. E.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
[CrossRef]

Gao, S.

Geng, P.

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Gifford, D. K.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Grenier, J. R.

Henken, K. R.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

Herman, P. R.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol.15, 1263–1287 (1997).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
[CrossRef]

Hnatovsky, C.

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Itoh, K.

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
[CrossRef]

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Jones, J.

Jones, J. D.

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

Kar, A. K.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 53–118.
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 445.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
[CrossRef]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

Kreger, S. T.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Laronche, A.

Lauzon, J.

Lee, J.

Leon-Saval, S. G.

Leviton, D. B.

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. of SPIE6273, 2K/1–2K/11 (2006).

Li, J.

MacPherson, W. N.

Maier, R. R. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Marques, P. V.

J. R. Grenier, L. A. Fernandes, P. V. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in “CLEO:2011 - Fiber Devices (CMZ),” (Optical Society of America, Baltimore, 2011).

Marques, P. V. S.

Marshall, G. D.

Martin, J.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

McCulloch, S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol.15, 1263–1287 (1997).
[CrossRef]

Mezentsev, V. K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

Miller, R. A.

Moore, J. P.

Moslehi, B.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Mou, C.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

Nishii, J.

Nolte, S.

Ouellette, F.

Park, Y.-L.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Peng, G. D.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

Pertsch, T.

Rayner, D. M.

Rogge, M. D.

Ruffin, P.

Ryu, S. C. R. S. C.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Sang, A. K.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Savall, J.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Seeley, R. J.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev.7, 83–108 (2013).
[CrossRef]

Shao, L.-Y.

Shin, M. S. M.

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

Simova, E.

Smith, G. W.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Steel, M. J.

Stewart Aitchison, J.

Suo, R.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

Szameit, A.

Taylor, R. S.

Thibault, S.

Thomson, R. R.

Tuennermann, A.

van den Bosch, B. G.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

van den Braber, R.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

van den Dobbelsteen, J.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

van der Heiden, M. S.

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

Voigtländer, C.

Wang, L.

Watanabe, W.

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

Williams, R. J.

Withford, M. J.

Wolfe, M. S.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

Xiong, L.

Yamada, K.

Yin, S.

Yong, Z.

Zhan, C.

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

Zhang, H.

Zhang, L.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt.43, 5425–5428 (2004).
[CrossRef] [PubMed]

G. Flockhart, W. N. MacPherson, J. S. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett.28, 387–389 (2003).
[CrossRef] [PubMed]

Zhang, S.

Zhang, W.

Zhao, D.

Zhou, K.

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt.43, 5425–5428 (2004).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978).
[CrossRef]

Computer Meth. Appl. Mechanics Engineer. (1)

M. A. Crisfield, “A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements,” Computer Meth. Appl. Mechanics Engineer.81, 131–150 (1990).
[CrossRef]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010).
[CrossRef]

IEEE Sensors J. (1)

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008).
[CrossRef]

J. Lightwave Technol. (2)

L.-Y. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28, 2681–2687 (2010).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol.15, 1263–1287 (1997).
[CrossRef]

Laser Photon. Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev.7, 83–108 (2013).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28, 2491–2493 (2003).
[CrossRef] [PubMed]

J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett.19, 2027–2029 (1994).
[CrossRef] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004).
[CrossRef] [PubMed]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tuennermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett.36, 2988–2990 (2011).
[CrossRef] [PubMed]

Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31, 1794–1796 (2006).
[CrossRef] [PubMed]

G. Flockhart, W. N. MacPherson, J. S. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett.28, 387–389 (2003).
[CrossRef] [PubMed]

Proc. of SPIE (2)

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. of SPIE6273, 2K/1–2K/11 (2006).

Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics (1)

Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).

SPIE Optical Systems Design (1)

M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

Other (4)

R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 445.

H. Zhang, “Bragg Grating Waveguide Devices: Discovery, Optimization, and Application,” Ph.D. thesis, University of Toronto (2007).

R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 53–118.
[CrossRef]

J. R. Grenier, L. A. Fernandes, P. V. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in “CLEO:2011 - Fiber Devices (CMZ),” (Optical Society of America, Baltimore, 2011).

Supplementary Material (2)

» Media 1: MOV (3261 KB)     
» Media 2: MOV (3358 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic (a) of a 3D distributed shape and thermal sensor written in coreless fused silica fiber by a femtosecond laser focussed with an oil-immersion lens. Microscope images of the fiber cross section (125 μm diameter) at the coupling (b) and sensor (c) regions, showing the arrangement of the internal laser-written waveguides.

Fig. 2
Fig. 2

Relative reflection spectra of the distributed BGW fiber sensor recorded with an OSA and a spectrometer together with an expanded sprectrum (inset) of the λ2 Bragg resonance showing the Δλb = 175 pm birefringence splitting.

Fig. 3
Fig. 3

Wavelength shift of Bragg resonance λ1 with temperature (a) during heating of the straight fiber, and wavelength shift of Bragg resonance λ7 with strain (b) during fiber bending at room temperature.

Fig. 4
Fig. 4

Fractional wavelength shifts recorded from BGW triplets λ1, λ4, λ7 at various azimuthal positioning of the fiber bent to 63 mm radius of curvature at room temperature.

Fig. 5
Fig. 5

Superimposed photographs (a) of the fiber sensor bent in various shapes showing scattered light while end-fired with a red diode laser. Calculated fiber profiles (b) in dashed lines superimposed onto the fiber shapes. Green lines indicate the BGW triplet locations.

Fig. 6
Fig. 6

A single-frame excerpt from the video recording ( Media 1) showing a side image of the 3D fiber shape sensor (foreground) at room temperature. captured simultaneously with three orthogonal views (background) that were calculated from the nine BGW wavelength shifts.

Fig. 7
Fig. 7

Single frame images from a time sequence ( Media 2) of fiber shape and temperature profile (top) calculated from the Bragg wavelength shifts in the reflection spectrum of nine BGWs (bottom), where the red lines indicate the Bragg wavelengths of unstrained gratings at room temperature. Fiber bending under uniform (a) and graded (b) temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ = ( 1 p e ) ε + ( α + 1 n ζ ) Δ T .

Metrics