Abstract

The absorption mechanism of the second pulse is experimentally and theoretically investigated for high-efficiency microwelding of photosensitive glass by double-pulse irradiation using a femtosecond laser. The transient absorption change during the second pulse irradiation for various energies induced by the first pulse is measured at different delay times. The resulting effects depend on whether the delay time is 0–30 ps (time domain I) or 30– several ns (domain II). By solving rate equations for the proposed electronic processes, the excitation and relaxation times of free electrons in time domain I are estimated to be 0.98 and 20.4 ps, respectively, whereas the relaxation times from the conduction band to a localized state and from the localized state to the valence band in domain II are 104.2 and 714.3 ps, respectively. Single-photon absorption of the second pulse by free electrons dominates in domain I, resulting in high bonding strength. In time domain II, about 46% of the second pulse is absorbed by a single photon due to the localized state, which is responsible for higher bonding strength compared with that prepared by single-pulse irradiation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
    [CrossRef]
  2. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
    [CrossRef]
  3. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
    [CrossRef]
  4. Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
    [CrossRef]
  5. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011).
    [CrossRef] [PubMed]
  6. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011).
    [CrossRef]
  7. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
    [CrossRef]
  8. S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
    [CrossRef]
  9. K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
    [CrossRef]
  10. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
    [CrossRef]
  11. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
    [CrossRef] [PubMed]
  12. S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
    [CrossRef]
  13. D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012).
    [CrossRef]
  14. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
    [CrossRef] [PubMed]
  15. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011).
    [CrossRef] [PubMed]
  16. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011).
    [CrossRef] [PubMed]
  17. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
    [CrossRef] [PubMed]
  18. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
    [CrossRef]
  19. C. Y. Ho, “Effects of polarizations of a laser on absorption in a paraboloid of revolution-shaped welding or drilling cavity,” J. Appl. Phys.96(10), 5393–5401 (2004).
    [CrossRef]
  20. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
    [CrossRef] [PubMed]
  21. I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
    [CrossRef]
  22. K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
    [CrossRef]
  23. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantu. Electron.2(4), 861–871 (1996).
    [CrossRef]
  24. T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
    [CrossRef]
  25. S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).
  26. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, Heiderberg, 1993).
  27. B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond,” J. Laser Micro/Nanoeng.1(1), 7–11 (2006).
    [CrossRef]
  28. J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004).
    [CrossRef]

2012 (6)

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012).
[CrossRef]

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012).
[CrossRef] [PubMed]

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
[CrossRef] [PubMed]

S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (1)

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

2008 (2)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

2007 (1)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
[CrossRef]

2006 (3)

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond,” J. Laser Micro/Nanoeng.1(1), 7–11 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
[CrossRef] [PubMed]

2005 (2)

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

2004 (3)

J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004).
[CrossRef]

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

C. Y. Ho, “Effects of polarizations of a laser on absorption in a paraboloid of revolution-shaped welding or drilling cavity,” J. Appl. Phys.96(10), 5393–5401 (2004).
[CrossRef]

2003 (1)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

1996 (2)

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantu. Electron.2(4), 861–871 (1996).
[CrossRef]

1995 (1)

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Alexeev, I.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

Bégin, M.

Berberoglu, H.

J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004).
[CrossRef]

Brenk, U.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Bui, V.

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

Cheng, Y.

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Choi, J.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Cvecek, K.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011).
[CrossRef]

I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011).
[CrossRef] [PubMed]

D’Oliveira, P.

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Daguzan, P.

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Doring, S.

S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Fisette, B.

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond,” J. Laser Micro/Nanoeng.1(1), 7–11 (2006).
[CrossRef]

Frick, T.

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Guizard, S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Hanada, Y.

Helie, D.

D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012).
[CrossRef]

Hélie, D.

Helvajian, H.

Hirao, K.

Hirose, A.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Ho, C. Y.

C. Y. Ho, “Effects of polarizations of a laser on absorption in a paraboloid of revolution-shaped welding or drilling cavity,” J. Appl. Phys.96(10), 5393–5401 (2004).
[CrossRef]

Hongo, T.

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Horn, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Iida, M.

Inoue, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Itoh, K.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
[CrossRef]

T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
[CrossRef] [PubMed]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Jang, W.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Kachel, M.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Kim, D.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Kim, J.

J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004).
[CrossRef]

Kim, T.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Kim, Y.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Lacroix, F.

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012).
[CrossRef] [PubMed]

D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012).
[CrossRef]

Lee, J.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Lee, Y.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Lim, K. S.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Makimura, T.

Mao, S. S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Mao, X.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Martin, P.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Masuda, M.

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Mazur, E.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Meunier, M.

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond,” J. Laser Micro/Nanoeng.1(1), 7–11 (2006).
[CrossRef]

Meynadier, P.

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Micorikawa, K.

Midorikawa, K.

S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
[CrossRef] [PubMed]

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Mingareev, I.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Miura, K.

Miyamoto, I.

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011).
[CrossRef]

I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011).
[CrossRef] [PubMed]

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Nagai, H.

Nahen, K.

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantu. Electron.2(4), 861–871 (1996).
[CrossRef]

Nakamura, A.

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Niino, H.

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Nishii, J.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
[CrossRef] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Nishiuchi, S.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Nolte, S.

S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Ohnishi, M.

Ohnuma, Y.

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Okamoto, Y.

Onda, S.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

Ozeki, Y.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Petite, G.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Quere, F.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Richter, S.

S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Russo, R. E.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

Sakakura, M.

Sano, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Scharfenberg, S.

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

Schmidt, C.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

Schmidt, M.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011).
[CrossRef] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011).
[CrossRef]

I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011).
[CrossRef] [PubMed]

Shimizu, M.

Shimotsuma, Y.

Sohn, I. B.

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

Strauss, J.

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

Suganuma, R.

Sugioka, K.

S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012).
[CrossRef] [PubMed]

K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011).
[CrossRef] [PubMed]

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Takai, H.

K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011).
[CrossRef] [PubMed]

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

Tamaki, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
[CrossRef]

T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
[CrossRef] [PubMed]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Tashiro, H.

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Toyoda, K.

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Tunnermann, A.

S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

Vallee, R.

D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012).
[CrossRef]

Vallée, R.

Vogel, A.

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantu. Electron.2(4), 861–871 (1996).
[CrossRef]

Wada, S.

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

Wang, H.

Watanabe, W.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
[CrossRef]

T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006).
[CrossRef] [PubMed]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Werth, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Wu, D.

Wu, S.

Xu, J.

Xu, X.

J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004).
[CrossRef]

Yamaguchi, H.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Yamaji, M.

Yoshida, M.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007).
[CrossRef]

Appl. Phys. Express (1)

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995).
[CrossRef]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (5)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008).
[CrossRef]

Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004).
[CrossRef]

S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantu. Electron. (1)

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantu. Electron.2(4), 861–871 (1996).
[CrossRef]

J. Appl. Phys. (2)

T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005).
[CrossRef]

C. Y. Ho, “Effects of polarizations of a laser on absorption in a paraboloid of revolution-shaped welding or drilling cavity,” J. Appl. Phys.96(10), 5393–5401 (2004).
[CrossRef]

J. Laser Micro/Nanoeng (1)

K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012).
[CrossRef]

J. Laser Micro/Nanoeng. (3)

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012).
[CrossRef]

B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond,” J. Laser Micro/Nanoeng.1(1), 7–11 (2006).
[CrossRef]

D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012).
[CrossRef]

J. Micro. Nanolith. (1)

J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005).
[CrossRef]

Nucl. Instr. and Meth. Phys. Res. B (1)

S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).

Opt. Express (5)

Opt. Lett. (1)

Phys. Procedia (1)

I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011).
[CrossRef]

Other (1)

K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, Heiderberg, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup to measure the transient absorption of the second pulse at different delay times.

Fig. 2
Fig. 2

Dependence of the optical density of the second pulse on the delay time. It is decomposed into two time domains: 0–30 ps (domain I) and 30–400 ps (domain II).

Fig. 3
Fig. 3

(a) Two-level model for time domain I associated with free-electron generation and relaxation. (b) Three-level model for domain II associated with electron trapping at a localized state such as a defect or exciton.

Fig. 4
Fig. 4

Dependence of the transient absorption of the second pulse on the delay time for different second pulse powers ranging from 5 to 155 mW.

Fig. 5
Fig. 5

Absorption channels for the second pulse in time domain I. One channel is interband excitation via the defect level, and the other channel is absorption by free electrons.

Fig. 6
Fig. 6

(a) Dependence of the absorbed power density of the second laser pulse on the incident laser power at a delay time of 15 ps obtained by experimental measurement (black line) and by data fitting (red line). (b) Laser power density absorbed by each absorption process for different second pulse powers.

Fig. 7
Fig. 7

Absorption channels for the second pulse in time domain II. The second pulse can be absorbed by the interband excitation and by the electrons trapped at the localized state.

Fig. 8
Fig. 8

Dependence of the absorbed power intensity of the second pulse on the incident laser power. Black lines: experimental results; red lines: data fitting using (a) Eq. (5) for single-, two-, and three-photon absorption, (b) Eq. (6) for single- and three-photon absorption, (c) Eq. (7) for two- and three-photon absorption, and (d) Eq. (8) for only three-photon absorption.

Fig. 9
Fig. 9

Laser power density absorbed by single- and three-photon processes for different second pulse powers estimated using the calculated absorption coefficients at a delay time of 100 ps.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d N c ( t )/dt=[ Γ I n ( t )+ γ vc ] N v ( t ) γ cv N c ( t )
d N c ( t ) dt = r c N c ( t ), d N ( t ) dt =+ r c N c ( t ) r v N ( t ),and d N v ( t ) dt =+ r v N ( t )
N ( t )= N 1 r v / r c [ exp( r v t )exp( r c t ) ]
dI dx = α 1 I α 3 I 3 α 4 I 4 α 5 I 5
1, 2, 3photon absorption:  dI dx = α 1 I α 2 I 2 α 3 I 3
1, 3photon absorption:       dI dx = α 1 I α 3 I 3
2, 3photon absorption:   dI dx = α 2 I 2 α 3 I 3 ,and
3photon absorption:           dI dx = α 3 I 3 .

Metrics